Vertebral implant adapted for posterior insertion

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S017150, C623S017160, C606S064000

Reexamination Certificate

active

06572653

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an endoprosthesis to replace an intervertebral disc. More particularly, the present invention relates to an endoprosthetic implant that is specifically designed to be inserted posteriorly.
2. Description of the Background Art
The human spine is made up of twenty-four stacked segments called vertebrae. Between adjacent vertebrae are small fibrocartilage cushions called intervertebral discs. These discs act as shock absorbers between adjacent vertebrae and permit the spinal column to bend. As bodily forces are transmitted along spine, an individual disc can often encounter hundreds of pounds of force. Spinal forces are also transmitted by way of inferior and superior articular processes that contact each other at facet joints. Intervertebral discs and facet joints are the two spinal mechanisms by which most spinal forces are transmitted. Consequently, most spinal pathology occurs at these locations.
For example, the fibrocartilage in the intervertebral discs often becomes worn or damaged through wear, age and/or disease. This damage limits spinal movements and can also result in pain as nerves become pinched and swollen. Damaged fibrocartilage, in turn, increases the pressure that is otherwise encountered by the facet joint adjacent the disc. This causes a premature wearing of the bone that makes up the joint. Again, limited spinal movement and pain result.
One of the oldest methods of repairing damaged intervertebral discs involves fusing adjacent vertebrae by way of a bone graft. Such methods, however, have serious drawbacks in that the resulting fused vertebrae limit the overall movement of the spine. Furthermore, once two vertebrae are fused, the pressures encountered by adjacent healthy discs is increased. This dramatically increases the likelihood that such healthy discs may become damaged and worn. Thus, the fusing of vertebrae often propagates the malady it seeks to cure.
Prosthetics are also employed to alleviate damaged intervertebral discs. This involves the removal of damaged fibrocartilage. The fibrocartilage is then replaced by an implant, typically formed from an elastomeric or an elastomeric composite. Prosthetic implants have the benefit of providing a more full range of spinal movement over fusion processes. Nonetheless, the elastomerics typically wear out over the life of the prosthetic. As a result additional medical procedures are required to replace the worn out prosthetic. Even prior to wearing out, elastomerics may simply wear unevenly, whereby the prosthetic provides an uneven resilient force between the vertebrae. This causes nerves to become pinched and swollen. Absent any type of wearing, elastomerics do not provide a cushioning effect that is equivalent to naturally occurring fibrocartilage. Forces not absorbed by the elastomeric are then transferred to the adjacent facet joint. This results in premature wearing of the joint.
An example of a synthetic intervertebral disc is disclosed by U.S. Pat. No. 5,458,642 to Beer, et al. Beer discloses the use of a synthetic intervertebral disc for implantation in the human body. The synthetic disc includes a polymeric core that is inserted between two plates. Spring means are included in addition to the polymeric core. Each of the plates includes a tab that is secured to a vertebrae via a screw.
Additionally, U.S. Pat. No. 6,231,609 to Mehdizadeh discloses a disc replacement prosthesis. The prosthesis includes screw threads which engage the vertebrae. A vertical stiffness is obtained from a series of coil springs affixed between upper an lower rigid members. The coil springs also provide assistance in resisting shear forces.
U.S. Pat. No. 5,556,431 to Büttner-Janz discloses an intervertebral disc endoprosthesis. The prosthesis includes two plates intermediate which a prosthesis core is included. The prosthesis core is made from a polyethylene. Bone screws are utilized in securing the two plates.
Finally, U.S. Pat. No. 6,156,067 to Bryan, et al discloses a spinal disc endoprosthesis with concave surfaces. A resilient body is included intermediate the two surfaces.
Although each of the above-referenced inventions achieves its individual objective they all suffer from common problems. Namely, none of the background art discloses an endoprosthesis which is specifically designed to be inserted posteriorly to thereby eliminate the most common source of spinal pathology.
SUMMARY OF THE INVENTION
It is therefore one of the objectives of this invention to provide an intervertebral disc endoprosthesis which is specifically adapted to be inserted posteriorly.
It is also an object of this invention to provide an intervertebral endoprosthesis which utilizes a mechanical spring to achieve a longer wear life and accommodate increased intervertebral forces.
Still another object of this invention is to provide an endoprosthesis which substantially eliminates most posterior spinal pathology.
Yet another object of this invention is to provide an endoprosthesis which eliminates the need for facet joints.
These and other objectives are accomplished by providing a vertebral implant adapted for posterior insertion and designed to replace the fibrocartilage between the facing surfaces of adjacent superior and inferior lumbar vertebrae. The implant includes two pairs of hydroxyapatite coated superior and inferior supports. Each support includes plate and lip portions. The lip portion is formed at a right angle to the plate portion. In the case of the inferior support the lip portion is offset to one side. The plate portion of each support further includes a plurality of teeth, a retainer, and a pair of tapering side edges. Each plate portion is received within a channel formed within one of the facing surfaces of the superior or inferior vertebrae such that the lip portions abut the posterior edge of the vertebrae. In the case of the inferior support, the offset lip accommodates a vertebral pedical.
The implant additionally includes a pair of springs. Each spring is formed from a plurality of oblong tapered coils. Each spring is positioned between the side edges of opposing superior and inferior supports with the position of the spring being fixed by the opposing retainers. Each spring has an axial force under compression that functions to drive the teeth of the opposing superior and inferior supports into the facing surfaces of the adjacent vertebrae.
The foregoing has outlined rather broadly the more pertinent and important features of the present invention in order that the detailed description of the invention that follows may be better understood so that the present contribution to the art can be more fully appreciated. Additional features of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.


REFERENCES:
patent: 3741205 (1973-06-01), Markolf et al.
patent: 3795390 (1974-03-01), Kendall et al.
patent: 4309777 (1982-01-01), Patil
patent: 4759769 (1988-07-01), Hedman et al.
patent: 4892545 (1990-01-01), Day et al.
patent: 4946378 (1990-08-01), Hirayama et al.
patent: 5360430 (1994-11-01), Lin
patent: 5401269 (1995-03-01), Buttner-Janz et al.
patent: 5458641 (1995-10-01), Ramirez Jimenez
patent: 5458642 (1995-10-01), Beer et al.
patent: 5534031 (1996-07-01), Matsuzaki et al.
patent: 5556431 (1996-09-01), Buttner-Janz
patent: 5702450 (1997-12-01), Bisserie
patent: 5827328 (1998-10-01), Buttermann
patent: 5893889 (1999-04-01), Harrington
patent: 5989291 (1999-11-01), Ralph et al.
patent: 6045579 (2000-04-01), Hochshuler et al.
patent: 6063121 (2000-05-01), Xavier et al.
patent: 611

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vertebral implant adapted for posterior insertion does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vertebral implant adapted for posterior insertion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vertebral implant adapted for posterior insertion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3145891

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.