Procedure for the controlled production or modification of...

Optics: measuring and testing – For light transmission or absorption – Of fluent material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S329300, C525S338000, C525S339000

Reexamination Certificate

active

06522408

ABSTRACT:

The present invention relates to a procedure for the controlled production or for the modification of polymeric products using IR-ATR spectroscopy.
It is known, for example, that partially hydrogenated acrylonitrile-butadiene rubbers (HNBRs) can be produced using Raman spectroscopy. By employing Raman spectroscopy during the production of HNBR rubbers it is possible to effect controlled hydrogenation of the acrylonitrile-butadiene rubbers which are used. In this connection, we refer to the German Patent Application with the Application Number 19736310.5.
One disadvantage of Raman spectroscopy is the high level of technical expenditure which is associated therewith, since a powerful laser is necessary for the excitation of the Raman spectrum. It is therefore desirable to be able to use an alternative method of measurement for the controlled production or modification of polymeric products. Infrared—Attenuated Total Reflection (IR-ATR) spectroscopy is a known technique of analyzing a liquid media with an optical probe. IR-ATR spectroscopy is an example of a possible alternative to Raman spectroscopy. This method of measurement has hitherto been used preferentially for the analysis of low-viscosity media. For the analysis of media of higher viscosity it has hitherto been necessary to make the measurement by means of a bypass which is mounted on the reactor in order to ensure sufficiently rapid mass transfer at the surface of the ATR crystal.
It must therefore be deemed to be surprising that it is possible, by means of IR-ATR spectroscopy and by using the procedure described in more detail below, to effect production or modification of polymeric products under accurately controlled conditions so as to achieve the desired degree of conversion or degree of modification.
The present invention therefore relates to a procedure for the controlled production or for the modification of polymeric products using IR-ATR spectroscopy, which is characterised in that
a) in the case of a polymer reaction the extinctions are determined of the characteristic IR absorption bands for the monomers used and of the resulting polymeric product or
b) in the case of a polymer modification the characteristic IR absorption bands are determined of the starting material used and of the modified polymeric product,
the degree of conversion or the degree of modification is calculated from the absorption bands, and when the desired degree of conversion or the desired degree of modification is reached the reaction is stopped by suitable measures, wherein the IR-ATR measurement is made directly, by means of an immersion probe, in an agitated reactor at short time intervals at maximum viscosities of the reactor contents of 10,000 Pas, preferably 10 to 1000 Pas, and at velocities of flow within the range from 0.01 to 10 m/sec, as measured at the location of the IR-ATR probe, and the degree of conversion or degree of modification is calculated as follows:
M

(
t
)
=
100
-
A

(
t
)
A

(
t
0
)
·
100

[
%
]
;
1.
U

(
t
)
=
100
-
A

(
t
)
A

(
t
0
)
·
100

[
%
]
;
2.
wherein
M(t)=the degree of modification at time t
U(t)=the degree of conversion at time t
A(t)=the extinction of a characteristic absorption band of the monomer used or of the starting material at time t
A(t
0
)=the extinction of the characteristic absorption band of the monomer used or of the starting material at time t
0
(start of the reaction).
In the present invention, a characteristic absorption band is to be understood as an absorption band which is present for the monomer used or for the starting material to be modified, which absorption band decreases during the reaction or modification and is no longer present in the polymeric product obtained or in the modified polymeric product.
The desired degree of conversion or the desired degree of modification depends on the respective polymer reaction or modification reaction. The degree of conversion for a polymer reaction should usually be at least 70%, preferably at least 80%, particularly at least 90%; the degree of modification can—as mentioned—be between 5 and 95% depending on the requirements.
The viscosities of the reactor contents during the IR-ATR measurement are most preferably 10 to 200 Pas. The velocities of flow are preferably 0.01 to 10, most preferably 0.1 to 2 m/sec.
In the procedure according to the invention, it is advisable to measure the IR-ATR spectra at time intervals of about 1 second to 1 hour, preferably of 10 seconds to 10 minutes, particularly of 30 seconds to 5 minutes.
By means of the procedure according to the invention, it is possible, for example, to control Polymer reactions, i.e. Polymerisation reactions which proceed by a radical mechanism, condensation Polymerisations and addition polymerisations. For example, the procedure according to the invention is suitable and is Preferably used for the controlled production of polyesters, polyamides, polycarbonates, polystyrene and polystyrene copolymers, and olefines, as well as synthetic rubbers, provided that the production of the polymers is effected in a homogeneous melt or in solution within said viscosity range, Particularly for the production of polyethylene terephthalate, polybutylene terephthalate, polymethyl methacrylate, polyester- or polyurethane-based lacquer resins, polyamide 6, polyamide 6.6, bisphenol A polycarbonate, polystyrene, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, polyethylene, polypropylene, polybutadiene, styrene-butadiene copolymers, polychloroprene, acrylonitrile-butadiene copolymers, ethylene-vinyl acetate copolymers, ethylene-propylene copolymers and isobutylene copolymers (butyl rubber).
Examples of modification reactions for polymeric products include hydrogenation reactions of unsaturated polymers, and the functionalisation of polymeric products, such as halogenation and carboxylation reactions.
The hydrogenation reaction of NBR rubbers should be emphasised as a particular example of the modification of polymeric products.
Therefore, the procedure according to the invention also relates to the controlled modification of nitrile rubbers (NBR rubbers) using IR-ATR spectroscopy, which is characterised in that the characteristic IR absorption bands of the NBR used and of the hydrogenated NBR are determined, the degree of modification is calculated from the absorption bands and when the desired degree of modification is reached the reaction is stopped by suitable measures, wherein the IR-ATR measurement is made directly, by means of an immersion probe, in an agitated reactor at time intervals from 10 seconds to 20 minutes at viscosities of the reactor contents from 1 to 100 Pas, preferably from 1 to 50 Pas, and at velocities of flow within the range from 0.1 to 10 m/sec, preferably from 1 to 8 m/sec, as measured at the location of the IR-ATR probe, and the degree of modification is calculated from the formula given above for the degree of modification.
The hydrogenation of NBR is effected here in the usual manner, by the batch-wise hydrogenation of NBR solutions in an agitated pressure autoclave with hydrogen. The polymer concentration in the solution to be hydrogenated is about 15% by weight. The homogeneous and heterogeneous catalysts which are used for hydrogenation, as well as the reaction conditions for hydrogenation, are described in greater detail in Ullmann's Encyclopedia of Industrial Chemistry of 1993 .
Examples of ATR immersion probes which are suitable for the procedure according to the invention for the controlled production or modification of polymeric products by means of IR-ATR spectroscopy include the ATR immersion probe of Type DPR 111 manufactured by Axiom Analytical Inc., 18103 Sky Park South, Irvine, Calif. 92714, USA, which is commercially available, or similarly constructed ATR immersion probes of sufficient pressure- and temperature-resistance. The IR-ATR measurement is made in an agitated reactor at the aforementioned velocities of flow and viscosities of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Procedure for the controlled production or modification of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Procedure for the controlled production or modification of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Procedure for the controlled production or modification of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.