Detection of cancer using antibodies to the alphafeto...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007210, C435S040500, C435S007230, C435S007700, C435S007900, C435S040510, C435S040520

Reexamination Certificate

active

06514685

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to the detection and/or treatment of cancer. More specifically, the present invention utilizes the existence of AFP receptor as a basis to detect cancer or contain or eliminate cancer in a patient.
BACKGROUND OF THE INVENTION
Twenty years ago, Abelev et al. reported the existence of the first oncofetal antigen, alphafetoprotein (AFP) [Abelev, G. I., Perova, S. D., Khramkova, N. I., Postnikova, Z. A. and Irlin, I. S., Transplantation 1, 174 (1963)]. Although this is the major circulating protein during fetal life, it almost disappears after birth, its normal adult serum concentration being less than 50 ng/ml [Ruoslahti, E. and Seppals, M., Int. J. Cancer 8, 374 (1971)]. However, in certain malignant diseases such as hepatocarcinomas or teratocarcinomas, plasma levels can be one thousand-fold higher [Ruoslahti, E. and Seppals, M. Adv. Cancer Res. 29, 275 (1979)]. This finding not only drew the attention of clinicians, who envisaged a new means for detecting malignancy and monitoring cancer patients, but also the interest of investigators studying the physiology of that protein during fetal life.
One of the first parameters studied was AFP distribution within the embryo. Using immunoperoxidase methods, Benno and Williams described the distribution of AFP in the developing rat brain [Benno, R. H. and Williams, T. H., Brain Res. 142, 1982 (1978)]. Shortly thereafter, a series of papers reported the localization of plasma proteins within developing nervous cells in several species including birds and man [Trojan, J. and Uriel, J., J. Oncodevelop. Biol. Med. 1, 107 (1980); Uriel, J., Trojan, J., Dubouch, P. and Pieiro, A., Path. Biol. 30, 79 (1982); Moro, R. and Uriel, J., J. Oncodevelop. Biol. Med. 2, 391 (1981); Dziegielewska, K. M., Evans, C. A. N., Lorscheider, E. L., Malinowska, D. H., Mollgard, K., Reynolds, M. L. and Saunders, N. R., J. Physiol. 318, 239 (1981); Mollgard, K., Jacobsen, M., Krag-Jacobsen, G., Praetorius-Claussen, P. and Saunders, N. R., Neurosci. Lett. 14, 85 (1979)]. For a given tissue or organ, the kinetics of the staining for AFP and serum albumin (SA) follow a rather constant pattern across different species [Uriel, J., Trojan, J., Moro, R. and Pieiro, A., Ann. N.Y. Acad. Sci. 417, 321 (1983)]. When a nervous structure is very immature, no intracellular AFP or SA is detected. Then, suddenly, and for a certain period of time depending upon the species, both proteins are simultaneously observed, even within the same cell [Torand-Allerand, C. D., Nature 286, 733 (1980)]. Subsequently, staining intensity fades and positive cells become scarce, first for AFP and later for SA. Mature structures are negative for both proteins. Other serum constituents, such as IgG, or ovalbumin in chicken embryos, are never found during fetal life within neural cells, in spite of being present in the cerebrospinal fluid [Fielitz, W., Esteves, A. and Moro, R., Dev. Brain Res. 13, 111 (1984)].
Incorporation of AFP by Embryonic Cells
One question arising from these initial observations was whether AFP and SA were incorporated from extracellular sources or synthesized in-situ. While it is not yet clear if neural cells are capable of synthesizing plasma proteins [Ali, M., Raul, H. and Sahib, M., Dev. Brain Res. 1, 618 (1981); Ali, M., Mujoo, K. and Sahib, M., Dev. Brain Res. 6, 47 (1983); Schachter, B. S. and Toran-Allerand, C. D., Dev. Brain Res. 5, 95 (1982); Pieiro, A., Calvo, M., Iguaz, F., Lampreave, F. and Naval, J. Int. J. Biochem. 14, 817 (1982)], it has been demonstrated, both in-vitro [Uriel, J., Faivre-Bauman, A., Trojan, J. and Foiret, D. Neurosci. Lett. 27, 171 (1981); Hajeri-Germond, M., Trojan, Uriel, J. and Hauw, J. J. Dev. Neurosci. 6, 111 (1984)] and in-vivo [Villacampa, M. J., Lampreave, F., Calvo, M., Pieiro, A. and Uriel, J. Dev. Brain Res. 12, 77 (1984); Moro, R., Fielitz, W., Grunberg, J. and Uriel, J., Int. J. Dev. Neurosci. 2, 143 (1984)], that neuroblasts can readily incorporate AFP and serum albumin from extracellular sources. The in-vivo experiments were done with homologous and with heterologous proteins. In the first case [Villacampa, M. J., Lampreave, F., Calvo, M., Pieiro, A. and Uriel, J. Dev. Brain Res. 12, 77 (1984)], it was shown that upon injection into pregnant rats, 125I-AFP localized in the fetal brain, as well as in other fetal organs such as the gut, skin, and tongue, organs in which native intracellular AFP had been previously reported [Trojan, J. and Uriel, J., Oncodev. Biol. Med. 3, 13 (1982)]. The second set of experiments [Moro, R., Fielitz, W., Grunberg, J. and Uriel, J., Int. J. Dev. Neurosci. 2, 143 (1984)] showed that when newborn rat serum was injected into the mesencephalic cavity of chicken embryos, rat AFP and rat SA could be detected in the same location as their native counterparts. This also indicated that AFP and SA from one species are taken up by cells from another species, thus pointing to structures and mechanisms conserved throughout evolution. This, in turn, suggests a basic biological principle is involved.
In spite of the high concentration of rat IgG injected, the staining for this protein was negative. This is not the result of its high molecular weight (150,000) which could hinder a passive diffusion, since ovalbumin (MW=43,000) could not be detected either, even when injected at twofold the normal molar concentration of AFP in the embryonic cerebrospinal fluid [Fielitz, W., Esteves, A. and Moro, R., Dev. Brain Res. 13, 111 (1984)]. This selectivity favoured the hypothesis of a specific receptor mediated mechanism of endocytosis [Moro, R. and Uriel, J., J. Oncodevelop. Biol. Med. 2, 391 (1981); Moro, R., Fielitz, W., Grunberg, J. and Uriel, J., Int. J. Dev. Neurosci. 2, 143 (1984)].
AFP Incorporation Depends on Cell Differentiation
However, at this point it was still unclear whether the uptake of AFP and SA was a cell-dependent phenomenon, or if the staining disappeared as a result of low extracellular protein availability due to the closing of the brain-blood barrier or to the low concentration of circulating AFP at the end of fetal life. It was demonstrated, first in chicken [Moro, R., Neurosci. Lett. 41, 253 (1983)] and then in human embryos [Jacobsen, M., Lassen, L. C. and Mollgard, K., Tumor Biol. 5, 55 (1984)], that spinal ganglion neural cells accomplish the entire negative-positive-negative staining cycle for AFP before its highest peak in serum is attained. Moreover, when AFP becomes undetectable, SA continues to be present for some time, thus indicating that these serum proteins have access to the ganglionic neuroblasts.
AFP Receptors in Immature Cells
The cellular uptake of AFP suggests the existence of a specific receptor whose expression is regulated according to the degree of cell differentiation [[Uriel, J., Trojan, J., Moro, R. and Pieiro, A., Ann. N.Y. Acad. Sci. 417, 321 (1983); Moro, R., Neurosci. Lett. 41, 253 (1983)]. A previous report [Uriel, J., Bouillon, D., Russel, C. and Dupiers, M., Proc. Nat. Acad. Sci. U.S.A. 73, 1452 (1976)] showed the presence of two ultracentrifugation fractions containing AFP in immature rat uterine cytosols; a 4s fraction, corresponding entirely to AFP, and an 8s fraction in which the immunological detection of AFP was only possible after treatment with 0.4 M KCI. This treatment transformed the 8s fraction into the 4s one. Very likely the 8s fraction corresponded to a receptor-AFP complex, which was dissociated at high KC1 concentrations, even though at the time the AFP receptor concept was not born yet. This dissociation of the AFP-receptor complex with KC1 was also observed by Smalley and Sarcione [Smalley, J. R. and Sarcione, E. J. Bioch. Biohys. Res. Comm. 94, 1429 (1980)] who also provided evidence that the AFP molecule could be synthesized by immature rat uterus cells.
Expression of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Detection of cancer using antibodies to the alphafeto... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Detection of cancer using antibodies to the alphafeto..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection of cancer using antibodies to the alphafeto... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144152

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.