Method for determining the wall thickness and the speed of...

Measuring and testing – Vibration – By mechanical waves

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S602000, C073S622000

Reexamination Certificate

active

06634233

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to the use of ultrasonic pulses, or waves, to measure the properties of objects in the wave's path, and more particularly to the use of an ultrasonic wave source to determine both the thickness of pipes and tubes and the speed of sound within the same, both from the same set of measured time of flight data and without recourse to assumed or predetermined values of properties unique to the pipe or tube being measured.
Various types of non-destructive measurement methods have been employed in the art for determining an object's structural properties. One method, utilizing ultrasonic waves, is particularly appealing due to its accuracy, relative low cost, and safety. It is commonly used to determine object thickness, as well as to detect flaws and discontinuities. Accordingly, its use in inspecting objects with hollow internal cavities not readily amenable to visual perception or the placement of a conventional measuring device is especially valuable. Exploitation of the wavelike nature of acoustically propagated signals, when combined with knowledge of the constitutive properties of the material making up the object, leads to reasonably accurate measurement of the object. Ultrasonic testing is well-suited to the measurement of material thickness, including layered or nonhomogenous materials with acoustically disparate properties. By taking advantage of different reflective properties of the constituent materials and the speed of propagation of the sound wave therethrough, the thickness of the material can be readily calculated.
The operation of a conventional ultrasonic measurement system in the time domain is relatively straightforward. Typically, a pulse generator produces an electrical signal with certain characteristics. This signal is sent to one or more transducers, where the signal is converted to an ultrasonic wave, which is then transmitted in the direction of a target object to be measured. Typically, both the target object as well as the transducers are in an acoustically-coupled medium, such as water, to enhance the detection of the waves over a more rarified medium, such as air. Echoes reflected from the object return to the transducers, which convert the echo into a corresponding electrical signal, which is then routed to a receiver, where the signals can be counted or digitized, analyzed and stored. Analysis of the echo shows that the thickness of the object can be equated to a product of the speed of sound and the propagation time of the ultrasound wave within the object. Once any two of these three values are known, the third can be easily calculated. Nevertheless, the accuracy of some calculations based on time of flight data is subject to limitations. For example, in the conventional analysis discussed above, the speed of sound in the object being measured is assumed. Furthermore, even if the assumed speed was accurate for one temperature, it might not be for another. In addition, in the conventional analysis, the frequency-dependence of the speed of sound is not considered; the spectral content can become significant if the object being measured exhibits dispersive (i.e.: frequency-dependent) properties. These assumptions and simplifications, based on a constant, predetermined value, may introduce errors into subsequent thickness calculations. Moreover, for objects with multiple walls (such as a tube), there are limitations on placement of the ultrasonic transducers, especially where the inside diameter of the tube is small. Existing methods, while appropriate for geometrically simple structures, such as flat plates, are incapable of measuring individual wall thickness of multi-walled objects.
Current methods to measure the wall thickness of tubes and tubular-shaped objects either depend on an assumed sound velocity in the tube, or use a calibration procedure. Both of these approaches have disadvantages. In the former case, inaccuracies can result, either from improper characterization of the constitutive properties of the material in the object, or from inhomogeneities in the material itself, such as due to the presence of cladding, alloying or composite structures. Insofar as the equations used to calculate thickness depend on the speed of sound in the object being measured, any inaccuracies in that assumed quantity will produce errors in thickness calculations. In the latter case, calibration is complicated and unreliable. In addition, it often must be conducted off-line, thereby taking away from precious measurement time.
It is well-known in the art to compensate measurements for variations in the temperature of the acoustic couplant medium (typically water). However, the temperature of the water can be significantly different than the temperature of the object in the water, especially when the object is passing through the water as part of a manufacturing step, such as the extrusion of tubes and related objects. Thus, assigning a temperature value (such as the measured temperature of the water in which the object is placed) to an object being measured may not accurately reflect the true temperature within the object.
The time-domain method provides a single scalar value of the speed of sound. If the sound wave passes through a dispersive medium, its determination will depend on the frequency characteristics of the transducers used in the measurement. However, an inherent part of the time-domain method is that such frequency-dependent values are not made manifest. Thus, in certain circumstances, additional measurement accuracy can be realized by using frequency-domain analysis, which can determine the phase velocity and group velocity at different frequencies. In the present context, the term “speed”, although in the strictest sense speed a scalar quantity, is used generally to represent both scalar and vector quantities in either the time-domain or the frequency-domain. Contrarily, the more specific terms “phase velocity” and “group velocity” are both functions of frequency, and their use is restricted to frequency-domain analyses. The frequency-dependent quantities, while usually not as big of a contributor to a thorough and accurate determination of object thickness as the speed of sound in the object, can nonetheless provide additional insight into secondary levels of measurement error, especially when conducted on dispersive materials.
Accordingly, what is needed is a method for measuring object thickness and sound velocity through the object simultaneously, such that neither assumed properties nor the use of complicated procedures is required. What is further needed is a method that eliminates the need for the associated uncertainty of thickness measurements.
BRIEF SUMMARY OF THE INVENTION
These needs are met by the present invention, where a new method for determining the sound propagation velocity and wall thickness of a tubular workpiece is described. As used in the present context, a tubular workpiece need not be cylindrical in cross-section; it could be elliptical or even rectangular. It will be appreciated by those skilled in the art that the present method could also be used on elongate, non-tubular members, such as cylindrical or elliptical solid rods and related structure. Extraction of the sound velocity and tube thickness from the sensed data obviates the need for using a contact-based method for measuring the tube thickness, which can be either inconvenient or inaccurate under certain conditions. It also avoids calculation errors by utilizing actual measured speed of sound in the tubular workpiece, rather than assuming a fixed, predetermined value. It also extends the use of multiple transducers to objects with complex geometries, such as tubes, where access limitations prohibit transducer configurations for single wall measurements to be used. The method is particular useful for real-time measurement of multiple wall thickness when the sound speed of the specimen may change, such as due to a change of temperature. Unlike the prior art, where the speed of soun

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for determining the wall thickness and the speed of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for determining the wall thickness and the speed of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining the wall thickness and the speed of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3139634

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.