Luminaire

Illumination – Light modifier – Reflector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S317000, C362S307000, C359S599000, C313S635000

Reexamination Certificate

active

06578990

ABSTRACT:

The invention relates to a luminaire comprising:
a reflector body having a reflective part provided with a coating, the coating in which exists at least a first and a second interference layer, the layers being mutually different, the coating further comprising at least one material selected from a set consisting of materials with a high-index of refraction and at least one further material selected from a further set consisting of materials with a low-index of refraction;
contact means for electrically connecting a light source.
Such a luminaire is known from U.S. Pat. No. 3,644,730. In the known luminaire the coating is light reflecting and comprises two or more interference layers of one-quarter wavelength each, the layers are alternatively of high- and low-index material. By choosing the number of layers, their index of refraction and their respective thickness the coating can be given particular desired optical properties. The optical properties of the coating are based on interference of light, the material of the interference layers being partly transparent for light. The interference is used to selectively influence wavelength dependence of reflection and transmission of the coating. It is thus enabled for the coating to be selectively reflective, for example, to be transparent for IR-radiation whilst being reflective for visible radiation. It is a disadvantage that the manufacturing of the reflective coating is cumbersome since for the coating to appear white, i.e. the coating being essentially total reflective for all wavelengths of the visual spectrum, a large number of alternate layers of high- and low-index materials is required. The manufacturing is even more cumbersome as it is difficult to apply the coating on the curved/shaped surface of the reflecting part of the luminaire. Alternatively, when a coating step is done before a shaping step, the manufacturing is even so cumbersome as the shaping of the pre-coated reflector involves significant risk of damage to the coating.
In a backlighting system the light reflecting coating might simultaneously act as a coating for a diffusor, i.e. due to scattering by the coating light passing through the diffusor is diffused. For example titanium dioxide particle coatings are generally known for that purpose. For such scattering of light to occur effectively, the coating should comprise particles having a size in the order of the wavelengths to be scattered, i.e. in the range of less than 1 &mgr;m. However, conventional coatings of essentially white particles of the indicated size, for example generally known titanium dioxide, suffer from color shift due to wavelength dependent scattering.
It is an object of the invention to provide a luminaire of the kind as described in the opening paragraph in which the abovementioned disadvantages are counteracted.
In accordance with the invention the luminaire of the type as described in the opening paragraph is characterized in that the coating comprises at least a first and a second light reflective particle group, the first interference layer being provided on particles of the first particle group, and the second interference layer being provided on particles of the second particle group,
for each light reflective particle group, the particles of that particle group consist of a material selected from one of said sets, and the respective interference layer consists of a material selected from the other of said sets,
at least one material in each respective light reflective particle group is selected to be different in composition or layer thickness from materials of any other particle group, and
relative quantities of each respective light reflective particle group are chosen such that, when their reflections are blended, white light of predetermined CIE coordinates is produced.
A generally known method for obtaining white light by blending relative spectral proportions is described in Van Nostrand's Scientific Encyclopedia by Douglas M. Considine, Van Nostrand Reinhold Company, New York (1976), 5
th
edition. In U.S. Pat. No. 4,434,010 a method to manufacture particles with an interference layer is disclosed. Particles with an interference layer are commercially available, for example under the trade name Iriodin/Afflair, and exhibit pearlescence, i.e. the particles have a milky brightness. The color of the pearlescent particles is due to the interference of light, i.e. interference of a part of the visible spectrum. In comparison thereto, conventional pigments absorb a part of the visible spectrum, while luminescent materials emit a part of the visible spectrum. The mutually different color of the interference (or pearlescent) pigments and thus of the particle groups is due to the interference layers being mutually different. For example, the interference layers of the first particle group with respect to the second one can differ either in layer thickness or in index of refraction, for example in that they are made of different materials. The particles preferably have a relatively large size, i.e. >=5 &mgr;m, and for that reason wavelength dependent scattering and hence color shift is counteracted. In the coating applied in the inventive luminaire, the particles in general have a relatively random orientation compared to the orientation of a layer on the shaped surface of the reflecting part of the known luminaire. It is generally known that the reflectance and color appearance of an interference layer is dependent on the wavelength and the angle of incidence of light. However, it was observed that the coating in the luminaire of the invention exhibits less dependency both on the incident angle of light and on the view angle on the coating. This can be explained by the relatively random orientation of the particles, and thus of the interference layer provided thereon, or the use of the blend of the different particle groups wherein a coloring effect of one particle group is more or less compensated for by another particle group. Preferably each particle within one of the particle groups is provided with the respective interference layer, and so further improving the independency of incident angle of light and view angle with respect to the color appearance. When the coating comprises at least two groups of mutual differently colored particle groups in appropriate relative proportions, it is possible to effectively counteract that the coating exhibits a particular color. Surprisingly, it appeared that the colors of the particle groups don't behave as subtractive colors as is the case for pigments, i.e. the combination of colors leads to darker/black colors. On the contrary, the colors of the particle groups behave as additive colors as is the case for luminescent materials, i.e. the combination of colors lead to whiter colors. Thus a coating which appears white for the human eye is obtainable. Such a white coating is especially well obtainable when in the coating the particles of said particle groups are mixed instead of being stacked as separate layers on each other. Coatings consisting of particles are relatively easily applied, for example by spraying, onto the reflector body, thus enabling the relatively easy manufacture of the luminaire having a white coating. It appeared that the coating of pearlescent particles has a relatively high reflection and that the interference layer is practically fully transparent for light. As a result, said coating has the advantage that larger numbers of reflections inside the coating and/or variations in thickness in the coating do not lead to significant light loss or to a color shift. Such light loss and/or said color shift, however, can be observed by conventional white powder coatings with optimized scattering power, such as, for example, a coating comprising titanium dioxide particles.
When a combination of two particle groups is used in the coating, the choice of the first particle group is determined in relation with the second particle group. The particle groups each have respective color coordinates in the CIE x,y

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Luminaire does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Luminaire, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Luminaire will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3137889

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.