Apparatus and method for transferring a cryogenic fluid

Refrigeration – Storage of solidified or liquified gas – Liquified gas transferred as liquid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S051100, C062S293000

Reexamination Certificate

active

06513336

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
In many cryogenic fluid transfer applications, it is important that the fluid be transferred in a 100% liquid state, or as close to 100% as possible. Conventionally, this required the fluid to be initially phase-separated and/or subcooled in a heat exchanger and/or vacuum jacketing the line to keep it well insulated. Otherwise, the heat leak in the transfer line would cause boil-off, thereby causing flow undulations in the transfer line and resulting in a non-steady, pulsing and generally undesirable flow. Heat leak is particularly a problem for long transfer lines.
The present invention addresses this first concern for cryogenic transfer lines with a coaxial or “tube-in-tube” geometry where a first portion of the cryogenic fluid flows through the inner tube while a second portion flows through an annulus between the inner tube and outer tube which annulus is at a lower pressure than the inside tube. By virtue of this pressure differential, one skilled in the art can appreciate that the liquid in the annulus can provide a refrigeration duty to the liquid inside the inner tube (e.g. such as by boiling) such that this inner liquid is cooled and stays a saturated liquid. Preferably, the liquid is even subcooled slightly such that a “cushion” of refrigeration is available to fight heat leak.
It is also important in many cryogenic fluid transfer applications that the transfer line be lightweight and flexible. This provides for maximum degrees of freedom during installation, operation and maintenance and also enables the line to withstand repeated bending. The present invention addresses this second concern for cryogenic transfer lines by making at least a portion of the line out of a flexible polymeric material.
The prior art does not provide for a cryogenic fluid transfer line that addresses both of these important concerns.
U.S. Pat. No. 3,696,627 (Longsworth) teaches a liquid cryogen transfer system having a rigid coaxial piping arrangement for subcooling and stabilizing cryogen flow during transfer. U.S. Pat. No. 4,296,610 (Davis), U.S. Pat. No. 4,336,689 (Davis), U.S. Pat. No. 4,715,187 (Stearns) and U.S. Pat. No. 5,477,691 (White) teach similar systems.
Chang et al. teaches non-metallic, flexible cryogenic transfer lines for use in cryosurgical systems where the cryogen is used to cool the cryoprobe in a cryosurgical system (“Development of a High-Performance Multiprobe Cryosurgical Device”, Biomedical Instrumentation and Technology, September/October 1994, pp. 383-390). Due to the heat leak boil-off resulting from the design of the flexible lines in Chang, combined with intrinsically poor insulation, such lines must be short and fed with a substantially subcooled cryogenic liquid (e.g. liquid nitrogen at −214° C.) in order to work properly. This requires the up-stream usage of complex and expensive cryogenic storage, supply and control systems.
Cryogenic transfer lines are also taught for use in machining applications where the cryogen is used to cool the interface of the cutting tool and the workpiece. See for example U.S. Pat. No. 2,635,399 (West), U.S. Pat. No. 5,103,701 (Lundin), U.S. Pat. No. 5,509,335 (Emerson), U.S. Pat. No. 5,592,863 (Jaskowiak), U.S. Pat. No. 5,761,974 (Wagner) and U.S. Pat. No. 5,901,623 (Hong). Similar to Chang, such lines must be short and fed with a substantially subcooled cryogenic liquid to combat heat leak boil-off and thus requires an expensive up-stream subcooling system.
U.S. Pat. No. 3,433,028 (Klee) discloses a coaxial system for conveying cryogenic fluids over substantial distances in pure single phase. Using fixed-size, inlet orifices in the cryogenic-conveying inner line, the liquid is admitted to the outer line where it vaporizes when subject to an external heat leak. A thermal sensor-based flow control unit, mounted at the exit end of this coaxial line, chokes the flow of the vapor in the outer line depending on the value of temperature required, usually 50 to 100 deg. F. more than the boiling point of the liquid in the inner line. As a result, the outer line pressure may be near the cryogenic source pressure, and its vapor always will be warmer than the inner line liquid. Moreover, high heat leaks cannot be fully countered since the amount of liquid admitted to the outer line for evaporation is permanently limited by the fixed-size inlet orifices. These operating principles necessitate the use of high-pressure resistant, non-flexing metal tubes and a thick-wall thermal insulation in the construction of the line.
JP 06210105 A teaches a polymeric coaxial transfer line for non-cryogenic degassing applications. The tube material characteristics preclude the use of the transfer line in cryogenic applications.
BRIEF SUMMARY OF THE INVENTION
The present invention is a method and apparatus for transferring a cryogenic fluid. A polymeric, coaxial (i.e. “tube-in-tube” geometry) transfer line is utilized where a first portion of the cryogenic fluid flows through the inner tube while a second portion flows through an annulus between the inner tube and outer tube which annulus is at a lower pressure than the inside tube. In one embodiment, the inner tube is substantially non-porous and the transfer line is preceded by a flow control means to distribute at least part of the first and second portions of the cryogenic fluid to the inner tube and annulus respectively. In a second embodiment, a least a portion of the inner tube is porous with respect to both gas permeation and liquid permeation such that both a gaseous part and a liquid part of the first portion permeates into the annulus to form at least a part of the second portion.


REFERENCES:
patent: 2635399 (1953-04-01), West, Jr.
patent: 3433028 (1969-03-01), Klee
patent: 3696627 (1972-10-01), Longswoth
patent: 3706208 (1972-12-01), Kadi et al.
patent: 4296610 (1981-10-01), Davis
patent: 4336689 (1982-06-01), Davis
patent: 4715187 (1987-12-01), Stearns
patent: 4745760 (1988-05-01), Porter
patent: 5009073 (1991-04-01), Missimer et al.
patent: 5103701 (1992-04-01), Lundin et al.
patent: 5477691 (1995-12-01), White
patent: 5509335 (1996-04-01), Emerson
patent: 5520682 (1996-05-01), Baust et al.
patent: 5592863 (1997-01-01), Jaskowiak et al.
patent: 5761974 (1998-06-01), Wang et al.
patent: 5901623 (1999-05-01), Hong
patent: 6210105 (1994-08-01), None
Biomedical Instrumentation and Tech., “Development of a High-Performance Multiprobe Cryosurgical Device”, Chang, et al, 1994.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for transferring a cryogenic fluid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for transferring a cryogenic fluid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for transferring a cryogenic fluid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3137390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.