Methods for regulating gastrointestinal motility

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S013800, C514S021800

Reexamination Certificate

active

06608029

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods for regulating gastrointestinal motility. More particularly, the invention relates to the use of amylin and agonists of amylin in the treatment of disorders which would be benefited with agents useful in delaying and/or slowing gastric emptying. The invention also relates to the use of amylin antagonists to accelerate gastric emptying, for example, in treating gastric hypomotility and associated disorders.
BACKGROUND
Amylin
Amylin is a 37-amino acid protein hormone. It was isolated, purified and chemically characterized as the major component of amyloid deposits in the islets of pancreases of human Type 2 diabetics (Cooper et al.,
Proc. Natl. Acad. Sci., USA
, 84:8628-8632 (1987)). The amylin molecule has two important post-translational modifications: the C-terminus is amidated, and the cysteines in positions 2 and 7 are cross-linked to form an N-terminal loop. The sequence of the open reading frame of the human amylin gene shows the presence of the Lys-Arg dibasic amino acid proteolytic cleavage signal, prior to the N-terminal codon for Lys, and the Gly prior to the Lys-Arg proteolytic signal at the CLAIMS-terminal position, a typical sequence for amidation by protein amidating enzyme, PAM (Cooper et al.,
Biochem. Biophys. Acta
, 1014:247-258 (1989)). Amylin is the subject of United Kingdom patent application Serial No. 8709871, filed Apr. 27, 1987, and corresponding U.S. applications filed Apr. 27, 1988, Nov. 23, 1988 and May 2, 1989.
In Type 1 diabetes, amylin has been shown to be deficient and combined replacement with insulin has been proposed as a preferred treatment over insulin alone, for instance in limiting hypoglycemic episodes. The use of amylin for the treatment of diabetes mellitus is the subject of United Kingdom patent application Serial No. 8720115 filed on Aug. 26, 1987, by G. J. S. Cooper, and filed as patent application Ser. No. 236,985 in the United States on Aug. 26, 1988. Pharmaceutical compositions containing amylin and amylin plus insulin are described in U.S. Pat. No. 5,124,314, issued Jun. 23, 1992.
Excess amylin action mimics key features of Type 2 diabetes and amylin blockade has been proposed as a novel therapeutic strategy. It has been disclosed in commonly-owned copending U.S. patent application Ser. No. 275,475, filed Nov. 23, 1988 by Cooper, G. J. S. et al., the contents of which are incorporated herein by reference, that amylin causes reduction in both basal and insulin-stimulated incorporation of labelled glucose into glycogen in skeletal muscle. The latter effect was also disclosed to be shared by CGRP (see also Leighton, B. and Cooper, G. J. S., Nature, 335:632-635 (1988)). Amylin and CGRP were approximately equipotent, showing marked activity at 1 to 10 nM. Amylin is also reported to reduce insulin-stimulated uptake of glucose into skeletal muscle and reduce glycogen content (Young et al.,
Amer. J. Physiol
. 259:457-46-1 (1990)). The treatment of Type 2 diabetes and insulin resistance with amylin antagonists is disclosed.
Both the chemical structure and the gene sequence of amylin have been said to support the determination that it is a biologically active or “messenger” molecule. The chemical structure is nearly 50% identical to the calcitonin-gene-related peptides (CGRP), also 37 amino acid proteins which are widespread neurotransmitters with many potent-biological actions, including vasodilation. Amylin and CGRP share the
2
Cys-
7
Cys disulphide bridge and,the C-terminal amide, both of which are essential for full biologic activity (Cooper et al.
Proc. Natl. Acad. Sci
., 85-7763-7766 (1988)).
Amylin may be one member of a family of related peptides which include CGRP, insulin, insulin-like growth factors, and the relaxins and which share common genetic heritage (Cooper, G. J. S., et al.,
Prog. Growth Factor Research
1:99-105 (1989)). The two peptides calcitonin and CGRP-1 share common parentage in the calcitonin gene where alternative processing of the primary mRNA transcript leads to the generation of the two distinct peptides, which share only limited sequence homology (about 30%) (Amara, S. G. et al.,
Science
, 229:1094-1097 (1985)). The amylin gene sequence is typical for a secreted messenger protein, with the MRNA coding a prepropeptide with processing sites for production of the secreted protein within the Golgi or secretary granules. Amylin is mainly co-localized with insulin in beta cell granules and may share the proteolytic processing enzymes that generate insulin from pro-insulin.
Amylin is primarily synthesized in pancreatic beta cells and is secreted in response to nutrient stimuli such as glucose and arginine. Studies with cloned beta-cell tumor lines (Moore et al.,
Biochem. Biophys. Res. Commun
., 179(1) (1991)), isolated islets (Kanatsuka et al.,
FEBS Lett
., 259(1), 199-201 (1989)) and perfused rat pancreases (Ogawa et al.,
J. Clin. Invest
., 85:973-976 (1990)) have shown that short pulses, 10 to 20 minutes, of nutrient secretagogues such as glucose and arginine, stimulate release of amylin as well as insulin. The molar amylin:insulin ratio of the secreted proteins varies between preparations from about 0.01 to 0.4, but appears not to vary much with different stimuli in any one preparation. However, during prolonged stimulation by elevated glucose, the amylin:insulin ratio can progressively increase (Gedulin et al.,
Biochem. Biophys. Res. Commun
., 180(1):782-789 (1991)). Thus, perhaps because gene expression and rate of translation are independently controlled, amylin and insulin are not always secreted in a constant ratio.
Amylin-like immunoreactivity has been measured in circulating blood in rodents and humans by a variety of radioimmunoassays all of which use rabbit anti-amylin antiserum, and most of which use an extraction and concentration procedure to increase assay sensitivity. In normal humans, fasting amylin levels from 1 to 10 pM and post-prandial or post-glucose levels of 5 to 20 pM have been reported (e.g., Hartter et al.,
Diabetologia
, 34:52-54 (1991)); Sanke et al.,
Diabetolopia
, 34:129-132 (1991)); Koda et al.,
The Lancet
, 339:1179-1180 (1992)). In obese, insulin-resistant individuals, post-food amylin levels can go higher, reaching up to about 50 pM. For comparison, the values for fasting and post-prandial insulin are 20 to 50 pM, and 100 to 300 pM respectively in healthy people, with perhaps 3-to 4-fold higher levels in insulin-resistant people. In Type 1 diabetes, where beta-cells are destroyed, amylin levels are at or below the levels of detection and do not rise in response to glucose (Koda et al.,
The Lancet
, 339, 1179-1180 (1992)). In normal mice and rats, basal amylin levels have been reported from 30 to 100 pM, while values up to 600 pM have been measured in certain insulin-resistant, diabetic strains of rodents (e.g., Huang et al.,
Hypertension
, 19:I-101-I-109 (1992); Gill et al.,
Life Sciences
, 48:703-710 (1991)).
It has been discovered that certain actions of amylin are similar to known non-metabolic actions of CGRP and calcitonin; however, the metabolic actions of amylin discovered during investigations of this newly identified protein appear to reflect its primary biologic role. At least some of these metabolic actions are mimicked by CGRP, albeit at doses which are markedly vasodilatory (see, e.g., Leighton et al.,
Nature
, 335:632-635 (1988); Molina et al.,
Diabetes
, 39:260-265 (1990)).
The first discovered action of amylin was the reduction of insulin-stimulated incorporation of glucose into glycogen in rat skeletal muscle (Leighton et al.,
Nature
, 335:632-635 (1988)); the muscle was made “insulin-resistant”. Subsequent work with rat soleus muscle ex-vivo and in vitro has indicated that amylin reduces glycogen-synthase activity, promotes conversion of glycogen phosphorylase from the inactive b form to the active a form, promotes net loss of glycogen (in the presence or absence of insulin), increases glucose-6-phosphate levels, and can increase lactate output (see, e.g., Deems et al.,
Biochem.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for regulating gastrointestinal motility does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for regulating gastrointestinal motility, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for regulating gastrointestinal motility will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3128491

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.