Automated collection, processing and use of sports movement...

Image analysis – Applications – Target tracking or detecting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S154000, C382S276000, C348S157000, C348S169000, C473S453000, C702S040000

Reexamination Certificate

active

06671390

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to the field of analysis of movement during a sports event. Also, the present invention is directed to an apparatus and method that extracts and exploits information conveyed within spatial phase (e.g., three-dimensional geometry) characteristics of electromagnetic energy (e.g., light), and is particularly directed to an apparatus and method that extracts data from multi-characteristic spatial phase processing as a novel approach to providing information useful for analysis of sports movement.
BACKGROUND OF THE INVENTION
In the various and wide ranging fields of sports, it is often desirable to observe, monitor, track, etc. the movement of one or more of the sports participants. The observation, etc. of the sports participant enhances enjoyment, aids in the regulation of the sports activity, allows diagnostic ability, etc. Many methods and devices have been developed to accomplish the observation, etc. of a sports participant.
For example, it is known to attach kinematic sensors to a sports participant. The kinematic sensors provide motion information that can be processed, and a computer-generated representation of the sports participant can be provided. However, it should be appreciated that attached sensors may have drawbacks, such as interfering with the movement of the sports participant.
Optical imaging has been used to observe, etc. sports participants. In many instances the obtained imagery is processed to determine movements of the sports participants. However, conventional imaging systems typically utilize the visible portion of light for image creation. Further, it may be difficult to identify/track plural sports participants and/or discrete portions (e.g., arms) of the sports participants due to adverse lighting conditions (e.g., low lighting or low contrast) or the like.
In one simple form of conventional imaging, videotape recording has long been used by persons, e.g., sports coaches, to help investigate sporting events. Coaches often use videotapes to analyze their own sports team as well as to analyze their opponent sports team. Often a coach can spend time breaking down portions of the videotaped activity and examining the shown activity for statistics, tendencies, strengths, and weaknesses.
However, the task of analysis may be large. For example, it has been reported by ESPN sources that the average NCAA Division I collage football coach spends roughly twenty hours per week watching and breaking-down videotape. The following table shows a few examples of the number of sports teams.
Pro
College
H.S.
Football
 59
  699
14,147
Basketball
 41
1,987
16,763
Hockey
135
1,640
 1,462
Baseball
147
  847
14,486
Others
 12
2,339
69,816
Total
394
7,512
116,674 
When the total number of coaches for all sports is considered, it is easy to appreciate that a great amount of time routinely goes toward videotape analysis. It could be beneficial to have the ability to easily and accurately process analysis of sporting events.
Turning to some conventional imaging systems that are used to monitor sporting events, as well as other applications, many such conventional systems employ intensity-based techniques to handle electromagnetic energy proceeding from a source (e.g., an object). It is to be noted that, in distinction, spatial phase is intensity independent. Spatial phase characteristics of electromagnetic energy include characteristics of the plurality of polarizations (e.g., linear and circular) that are present within the electromagnetic energy.
As one type of utilization of polarization characteristics, polarimetry identifies, isolates, and/or uses a generalized polarization of electromagnetic energy. In the past, scientists have used polarimetry to filter imagery for specific applications. Polarization filters are used to collect polarization data, and classical polarization theory is used to determine one level of the spatial phase properties. However, overall spatial phase of a propagated electromagnetic wave can a significant amount of information that is indicative of unique features about the wave history. For example, properties of an electromagnetic wave change as the wave interacts with media and changes as the wave transverses a surface. Therefore, while some of the prior art is capable of performing limited polarimetry and other intensity-based applications, it is not capable, for the reasons discussed, of providing true, multi-dimensional, real-time spatial phase imaging.
The inventors have recognized that a spatial phase system would solve the above-mentioned problems and also go further into the complete analysis of the phase information that is contained in the electromagnetic energy. By the scientific analysis of all the radiation being transmitted, reflected, emitted and/or absorbed, one can determine its phase properties. The phase properties are those characteristics that convey information (e.g., an indication of the media through which a wave has passed) that could allow significant imaging abilities that lend themselves to heightened analysis ability. Along these lines, the inventors have recognized that spatial phase is a technology with tremendous benefit potential.
SUMMARY OF THE INVENTION
In accordance with one aspect, the present invention provides a system for tracking movement that occurs during a sports activity. The system includes an article, associated with the sport, which provides a known spatial phase characteristic conveyed via electromagnetic energy. Receiver means monitors the area within which the sports activity is occurring. The receiver means includes means for receiving electromagnetic energy. The electromagnetic energy includes the electromagnetic energy from the article that conveys the spatial phase characteristic. Means identifies the known spatial phase characteristic provided by the article among the spatial phase characteristics of electromagnetic energy to locate the article. Means tracks physical movement of the article by tracking the location of the article.
In accordance with another aspect, the present invention provides a system for tracking movement of a sports participant of a sports activity. The system comprises an article associated with the sports participant. The article provides a known spatial phase characteristic conveyed via electromagnetic energy. Receiver means monitors the venue area within which the sports activity is occurring. The receiver means includes means for receiving electromagnetic energy including the electromagnetic energy from the article that conveys the spatial phase characteristic. Means identifies the known spatial phase characteristic provided by the article among the spatial phase characteristics of electromagnetic energy to locate the article. Means tracks physical movement of the sports participant by tracking the location of the article.
In accordance with another aspect, the present invention provides a system for tracking movement of a sports participant of a sports activity. Receiver means monitors an area within which the sports activity is occurring. The receiver means includes means for receiving electromagnetic energy having a plurality of spatial phase characteristics. Means separates the plurality of spatial phase characteristics of the received electromagnetic energy. Means identifies spatially segregated portions of each spatial phase characteristic, with each spatially segregated portion of each spatial phase characteristic corresponding to a spatially segregated portion of each of the other spatial phase characteristics in a group. Means quantifies each segregated portion to provide a spatial phase metric of each segregated portion for providing a data map of the spatial phase metric of each separated spatial phase characteristic. Means associates at least one spatial phase characteristic with the sports participant. Means tracks the at least one spatial phase characteristic to identify movement of the sports participant.
In accordance with another aspect, the pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated collection, processing and use of sports movement... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated collection, processing and use of sports movement..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated collection, processing and use of sports movement... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3127628

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.