Nucleosides with anti-hepatitis B virus activity

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S026700, C536S027140

Reexamination Certificate

active

06525033

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention is in the area of methods for the treatment of hepatitis B virus (also referred to as “HBV”) that includes administering an effective amount of one or more of the active compounds disclosed herein, or a pharmaceutically acceptable derivative or prodrug of one of these compounds.
HBV is second only to tobacco as a cause of human cancer. The mechanism by which HBV induces cancer is unknown, although it is postulated that it may directly trigger tumor development, or indirectly trigger tumor development through chronic inflammation, cirrhosis, and cell regeneration associated with the infection.
Hepatitis B virus has reached epidemic levels worldwide. After a two to six month incubation period in which the host is unaware of the infection, HBV infection can lead to acute hepatitis and liver damage, that causes abdominal pain, jaundice, and elevated blood levels of certain enzymes. HBV can cause fulminant hepatitis, a rapidly progressive, often fatal form of the disease in which massive sections of the liver are destroyed. Patients typically recover from acute viral hepatitis. In some patients, however, high levels of viral antigen persist in the blood for an extended, or indefinite, period, causing a chronic infection. Chronic infections can lead to chronic persistent hepatitis. Patients infected with chronic persistent HBV are most common in developing countries. By mid-1991, there were approximately 225 million chronic carriers of HBV in Asia alone, and worldwide, almost 300 million carriers. Chronic persistent hepatitis can cause fatigue, cirrhosis of the liver, and hepatocellular carcinoma, a primary liver cancer.
In western industrialized countries, high risk groups for HBV infection include those in contact with HBV carriers or their blood samples. The epidemiology of HBV is in fact very similar to that of acquired immunodeficiency syndrome, which accounts for why HBV infection is common among patients with AIDS or HIV-associated infections. However, HBV is more contagious than HIV.
Daily treatments with &agr;-interferon, a genetically engineered protein, has shown promise. A human serum-derived vaccine has also been developed to immunize patients against HBV. Vaccines have been produced through genetic engineering. While the vaccine has been found effective, production of the vaccine is troublesome because the supply of human serum from chronic carriers is limited, and the purification procedure is long and expensive. Further, each batch of vaccine prepared from different serum must be tested in chimpanzees to ensure safety. In addition, the vaccine does not help the patients already infected with the virus.
European Patent Application No. 92304530.6 discloses that a group of 1,2-oxathiolane nucleosides are useful in the treatment of hepatitis B infections. It has been reported that the 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane has anti-hepatitis B activity. Doong, et al.,
Proc. of Natl. Acad. Sci, USA
, 88, 8495-8499 (1991); Chang, et al.,
J. of Biological Chem
., Vol 267(20), 13938-13942. The anti-hepatitis B activity of the (−) and (+)-enantiomers of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane has been published by Furman, et al., in
Antimicrobial Agents and Chemotherapy
, Dec. 1992, pages 2686-2692.
In light of the fact that hepatitis B virus has reached epidemic levels worldwide, and has severe and often tragic effects on the infected patient, there remains a strong need to provide new effective pharmaceutical agents to treat humans infected with the virus that have low toxicity to the host.
Therefore, it is another object of the present invention to provide a method and composition for the treatment of human patients or other hosts infected with HBV.
SUMMARY OF THE INVENTION
A method for the treatment of a host, and in particular, a human, infected with HBV is provided that includes administering an HBV-treatment amount of a nucleoside of the formula:
wherein: R
1
is hydrogen, fluoro, bromo, chloro, iodo, methyl or ethyl; and R
2
is OH, Cl, NH
2
, or H; or a pharmaceutically acceptable salt of the compound, optionally in a pharmaceutically acceptable carrier or diluent. In a preferred embodiment, the nucleoside is provided as the indicated enantiomer and substantially in the absence of its corresponding enantiomer (i.e., in enantiomerically enriched form).
In an alternative embodiment, the &bgr;-L-enantiomer of a compound of the formula:
wherein R
5
is adenine, xanthine, hypoxanthine, or other purine, including an alkylated or halogenated purine is administered to a host in an HBV-treatment amount as described more fully herein.
In another embodiment, the invention includes a method for the treatment of humans infected with HBV that includes administering an HBV treatment amount of a prodrug of the specifically disclosed nucleosides. A prodrug, as used herein, refers to a pharmaceutically acceptable derivative of the specifically disclosed nucleoside, that is converted into the nucleoside on administration in vivo, or that has activity in itself. Nonlimiting examples are the 5′ and N
4
-pyrimidine or N
6
-purine acylated or alkylated derivatives of the active compound.
The disclosed nucleosides, or their pharmaceutically acceptable prodrugs or salts or pharmaceutically acceptable formulations containing these compounds are useful in the prevention and treatment of HBV infections and other related conditions such as anti-HBV antibody positive and HBV-positive conditions, chronic liver inflammation caused by HBV, cirrhosis, acute hepatitis, fulminant hepatitis, chronic persistent hepatitis, and fatigue. These compounds or formulations can also be used prophylactically to prevent or retard the progression of clinical illness in individuals who are anti-HBV antibody or HBV-antigen positive or who have been exposed to HBV.
In one embodiment of the invention, one or more of the active compounds is administered in alternation or combination with one or more other anti-HBV agents, to provide effective anti-HBV treatment. Examples of anti-HBV agents that can be used in alternation or combination therapy include but are not limited to the (−)-enantiomer or racemic mixture of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (“FTC”, see WO 92/14743), its physiologically acceptable derivative, or physiologically acceptable salt; the (−)-enantiomer or racemic mixture of 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane (also referred to as “BCH-189” or 3TC, see EPA Publication No. 0 382 526), its physiologically acceptable derivative, or physiologically acceptable salt; an enantiomer or racemic mixture of 2′-fluoro-5-iodo-arabinosyluracil (FIAU); an enantiomer or racemic mixture of 2′-fluoro-5-ethyl-arabinosyluracil (FEAU); carbovir, or interferon.
Any method of alternation can be used that provides treatment to the patient. Nonlimiting examples of alternation patterns include 1-6 weeks of administration of an effective amount of one agent followed by 1-6 weeks of administration of an effective amount of a second anti-HBV agent. The alternation schedule can include periods of no treatment. Combination therapy generally includes the simultaneous administration of an effective ratio of dosages of two or more anti-HBV agents.
In light of the fact that HBV is often found in patients who are also anti-HIV antibody or HIV-antigen positive or who have been exposed to HIV, the active anti-HBV compounds disclosed herein or their derivatives or prodrugs can be administered in the appropriate circumstance in combination or alternation with anti-HIV medications, including but not limited to 3′-azido-3′-deoxythymidine (AZT), 2′,3′-dideoxyinosine (DDI), 2′,3′-dideoxycytidine (DDC), 2′,3′-dideoxy-2′, 3′-didehydrothymidine (D4T), 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (FTC), or 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane (BCH-189), in racemic or enantiomeric form. Non-nucleoside RT-inhibitors such

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleosides with anti-hepatitis B virus activity does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleosides with anti-hepatitis B virus activity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleosides with anti-hepatitis B virus activity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3124247

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.