Method and apparatus to detect and treat sleep respiratory...

Surgery – Diagnostic testing – Respiratory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S547000, C600S536000

Reexamination Certificate

active

06641542

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to implantable medical devices, and more particularly, to a method and apparatus for detecting and treating sleep apnea.
DESCRIPTION OF THE RELATED ART
Although the function of sleep is not well understood, one obvious consequence of an inadequate quantity or poor quality of sleep is an inability to maintain adequate wakefulness. However, while there are many medical conditions that can prevent a person from receiving a good night's rest, one such condition is sleep apnea.
Sleep apnea is generally defined as the cessation of breathing during sleep, and usually comes in at least one of two basic types. The more common type of sleep apnea is obstructive sleep apnea (“OSA”), which is generally characterized by repetitive pauses in breathing during sleep due to the obstruction and/or collapse of the upper airway, usually accompanied by a reduction in blood oxygen saturation.
The less common type of sleep apnea, central sleep apnea (CSA), is generally defined as a neurological condition causing cessation of substantially all respiratory effort during sleep, usually accompanied with decreases in blood oxygen saturation. In other words, the airway is not necessarily blocked, but the brain fails to send the appropriate signals to the breathing muscles to initiate respirations. As a result, respiratory effort ceases during periods of CSA. Additionally, a patient with CSA is generally aroused from sleep by an automatic reflex to breathe. Such arousal may prevent the patient from receiving a deep, restful sleep.
One common form of central sleep apnea, commonly known as Cheyne-Stokes respiration (CSR), is generally a breathing pattern that is first shallow and infrequent and then increases gradually to become abnormally deep and rapid, before fading away completely for a brief period. Breathing may be stopped for an extended time period, before the next cycle of shallow breathing begins. CSR is common in patients with CHF. It should be noted that some patients have some combination of OSA and CSA, which is commonly known as mixed sleep apnea.
Sleep apnea may cause a variety of medical and other problems among patients. Cycles of sleep, snoring, obstruction, arousal, and sleep may occur many times throughout the night. Although such nocturnal arousals may last only a few seconds, they prevent a person from reaching the deep sleep stages (i.e., stage 3-4 and rapid eye movement (REM) sleep), which the body generally needs to rest and replenish its strength.
Furthermore, multiple arousals with sleep fragmentation are likely to cause excessive daytime sleepiness and fatigue, cognitive impairment, depression, headaches, chest pain, and diminished sexual drive. Sleep apnea is generally associated with cardiovascular morbidity, including systemic hypertension, pulmonary hypertension, ischemic heart disease, stroke, and cardiac arrhythmias. Sleep apnea is also usually associated with increased mortality by negatively affecting the status, progression, and outcomes of previously existing conditions, such as congestive heart failure (“CHF”).
OSA is a disorder that is generally underdiagnosed and undertreated. Because OSA may worsen the effects of a previously existing condition, such as CHF, treatment of OSA may be beneficial to reduce its negative on the previously existing condition. Once OSA has been properly diagnosed, a variety of therapies may be available. Common OSA therapies include non-surgical methods, such as continuous positive airway pressure (“CPAP”), as well as surgical methods, such as uvulopalatopharyngoplasty (“UPPP”). Effective therapy for OSA can often reverse or ameliorate the problems associated with OSA.
One method of diagnosis for sleep apnea is polysomnography. In polysomnography, multiple physiological parameters are measured while the patient sleeps in a sleep laboratory. Typical parameters in a polysomnography include eye movement observations (to determine whether a patient has reached REM sleep), an electroencephalogram (to determine arousals from sleep), chest wall monitors (to document respiratory movements), nasal and oral air flow measurements, and an electrocardiogram, among other parameters. A combination of these and other factors are used by doctors and other qualified sleep specialists to determine whether a patient has sleep apnea. However, an overnight sleep study is generally expensive and time-consuming. As a result, many patients with sleep apnea may not seek proper diagnosis or treatment of their sleeping disorder from a doctor or other qualified sleep specialist. Even if a patient is diagnosed with sleep apnea, frequent laboratory monitoring of the patient is generally not feasible due to the expense and time involved in a nocturnal polysomnography.
The technology explosion in the implantable medical devices industry has resulted in many new and innovative devices and methods for analyzing and improving the health of a patient. The class of implantable medical devices now includes pacemakers, implantable cardioverters, defibrillators, neural stimulators, and drug administering devices, among others. Today's state-of-the-art implantable medical devices are vastly more sophisticated and complex than early ones, capable of performing significantly more complex tasks. The therapeutic benefits of such devices have been well proven.
There are many implementations of implantable medical devices that provide data acquisition of important physiological data from a human body. Many implantable medical devices are used for cardiac monitoring and therapy. Often these devices include sensors that are placed in blood vessels and/or chambers of the heart, and are operatively coupled with implantable monitors and therapy delivery devices. For example, such cardiac systems include implantable heart monitors and therapy delivery devices, such as pacemakers, cardioverters, defibrillators, heart pumps, cardiomyostimulators, ischemia treatment devices, drug delivery devices, and other heart therapy devices. Most of these cardiac systems include electrodes for sensing and gain amplifiers for recording and/or driving sense event signals from the inter-cardiac or remote electrogram (“EGM”).
Many patients who use implantable medical devices may be at risk for sleep apnea. However, patients are generally left with traditional forms of diagnosis for sleep apnea, such as polysomnography. As mentioned, polysomnography may be an expensive and time-consuming procedure. Furthermore, many patients may not recognize that they have symptoms relating to sleep apnea, such that they would seek diagnosis and treatment for the disorder. Polysomnography is generally an infrequent procedure that does not provide long term monitoring of the patient's condition after the patient has been diagnosed. Even after a patient is diagnosed with sleep apnea, traditional methods of treatment such as CPAP may be time-consuming and costly.
SUMMARY OF THE INVENTION
In one aspect of the present invention, a method is provided for detecting and treating sleep apnea. The method includes gathering information from an implantable sensor device for detecting sleep apnea, extracting an average cycle length and a frequency of at least one of Cheyne-Stokes respiration and periodic breathing based upon the information gathered from the implantable sensor device, performing diagnostics and decision on the average cycle length and the frequency to form results, and delivering therapy in response to the results of the diagnostics for treating sleep apnea.
In another aspect of the present invention, an apparatus is provided for detecting and treating sleep apnea. The apparatus includes an implantable first sensor adapted to gather information related to sleep apnea, a program for extracting an average cycle length and a frequency of at least one of Cheyne-Stokes respiration and periodic breathing based upon the information gathered, a program for performing diagnostics and decision on the average cycle length and the frequency to form results, an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus to detect and treat sleep respiratory... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus to detect and treat sleep respiratory..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus to detect and treat sleep respiratory... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3123923

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.