Laminar structure

Stock material or miscellaneous articles – Layer or component removable to expose adhesive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S041300, C428S041800, C428S323000, C428S325000, C428S327000, C428S328000, C428S331000, C428S351000, C428S352000, C428S354000, C428S500000, C428S515000, C428S516000, C428S517000, C428S519000

Reexamination Certificate

active

06638590

ABSTRACT:

FIELD OF THE INVENTION
The subject matter of the instant invention relates to a composite structure that is useful for protecting an underlying substrate from the environment.
BACKGROUND OF THE INVENTION
A wrap or bandage has conventionally been employed for protecting wooden surfaces, e.g., the top of utility poles. Examples of such wraps are described in U.S. Pat. Nos. 3,420,617 and 3,467,490; the disclosure of each of which is hereby incorporated by reference. These wraps typically consist of a multi-layer structure including a layer of preservative containing material, a moisture barrier and a strength imparting layer. The disadvantages associated with such wraps are relatively high manufacturing cost, and the presence of materials having an undesirable environmental impact.
SUMMARY OF THE INVENTION
The instant invention solves problems associated with conventional materials by providing a laminar structure comprising a tacky mastic at least partially in contact with an ultra-violet (UV) light barrier. That is, the ultra-violet barrier is adhered to the tacky mastic, e.g, the mastic functions as an adhesive to adhere the UV barrier material to a substrate to be protected and the UV barrier material, inter alia, provides the underlying substrate with protection from ultra-violet radiation, water, among other agents that adversely impact the substrate. The structure can be employed for protecting a wide range of substrates such as wood, metal, concrete, cement, among other substrates.
The structure can be cut or shaped into a virtually unlimited array of configurations. A release layer or film (or liner) can be applied onto at least a portion of one or more sides of the structure, e.g, the release layer comprises a separate removable film. If desired, the release layer can be applied onto both sides or surfaces the structure, i.e., upon the tacky mastic and the UV barrier. The release layer is normally removed from the structure prior to applying the structure onto the substrate to be protected. Once applied the structure can protect the substrate from moisture, UV, microbial and animal attack.
DETAILED DESCRIPTION
The instant invention comprises or consist essentially of a laminar structure comprising a tacky mastic at least partially in contact with an ultra-violet (UV) light barrier. That is, the UV light barrier (or a film thereof) is sufficient to protect the mastic and substrate from degradation caused by TV exposure. The inventive structure can be substantially free from heavy metals such as chrome, lead, salts thereof, among other environmentally undesirable compounds. By substantially free, it is meant that neither the structure nor any layer or film thereof contains greater than about 2 wt. % of such compounds and normally about 0 wt. %.
The tacky mastic material can be based upon any suitable mastic type material such as about 5 to about 30 wt. % of at least one member selected from the group consisting of butyl rubber, butyl-styrene rubber, polyisobutylene rubber, commercially available elastomeric or rubber compounds, among other materials having a tacky characteristic with respect to the substrate and combinations thereof. The tacky material can also include about 15 to about 35 wt. % of one or more natural or synthetic oils such as polybutene, polyalphaolefin, among other materials effective at plasticizing the tacky material. One or more fillers such as about 40 to about 80 wt. % of at least one member selected from the group consisting of aluminum stearate, calcium carbonate, clay, carbon ash, silicon dioxide, titanium dioxide, among other compounds effective at extending the material and increasing viscosity, can be employed as a component of the material. One or more hydrocarbon resins such as about 1 to about 15 wt. % of an aliphatic, hydrocarbon resins, among others effective at adhering the material to the underlying substrate, e.g., Picotac® supplied by Hercules, can be a component of the tacky material. About 1 to about 5 wt. % of a commercially available anit-oxidants such as [methylene-3(3′,5′-di-tert-butyl-4-hydroxyphenyl)propionate]methane and Thiodiethylene bis(3,5-di-tert-butyl-4-hydroxy)hydrocinnamate, among others, e.g, Irgonoxg® 1010 supplied by Ciba Giegy, can also be a component of the tacky material. The following is an example of a suitable mastic material:
COMPONENT
AMOUNT WT. %
SUPPLIER
butyl rubber
2.87%
Exxon
calcium carbonate
35.9%
Quincy Carbonates
hydrocarbon resins
2.87%
Hercules
polybutene oil
22.5%
Amoco
aluminum stearate
0.35%
Mozel Medgel
methylene propionate methane
0.02%
Ciba Giegy
carbon ash
0.71%
Cabot Corporation
titanium dioxide
2.87%
Chemcentral
butyl-styrene rubber
9.57%
Exxon
silicon dioxide
2.53%
PPG
clay
19.7%
Evans Clay
Normally, the amount of each component listed in the above Table can vary by about 2 to about 5 wt. %. The mastic material can also comprise one or more additives selected from the group consisting of viscosity control agents, colorants, microbial (fungus) inhibitors, water repellents, among others and combinations thereof. While any suitable antimicrobial material can be employed, particuaraly desirable results have been obtained by using a material comprising barium sulphate (such as that supplied by Busan as 11-M-1). If present, the additive comprises about 1 to about 3 wt. % of the compositions.
The UV barrier or film material can be any suitable material such as at least one member selected from the group consisting of low-density polyethylene, polyethylene/ethylene vinyl acetate co-polymer, among others. Normally, the barrier comprises an opaque low-density polyethylene, i.e., opaque to UV radiation and in some cases opaque to visible light. While any suitable UV barrier material can be employed, suitable materials are currently supplied by Crown Zellerbach, Westlake Polyers Corporation and Elkay Plastics Co., Inc. The UV barrier protects an underlying mastic layer from exposure to the sun, improves moisture resistance, reduces microbial/animal attack of the underlying substrate, among other desirable properties. The UV barrier can be non-electrically conductive; especially when employed for protecting the top of an electric or utility pole, or other environments wherein electrical conduction is undesirable.
In the event, the inventive structure is employed in an application wherein UV resistance is not critical the barrier or film material can comprise at least one member selected from the group consisting of nylon, polyesters such as polyethyleneterupthilate (PET), PVC, PETG, polycarbonate, polystyrene, ABS, nylon, polyethylene, polypropylene, fluoropolymers, vinyls, styrenics, among other commercially available polymeric films. For example, moisture resistance is more important than UV resistance in subterranean applications.
The thickness of each component of the structure can be tailored to satisfy a particular end-use. Normally, the thickness of the mastic component is about ⅛ to about ¼ inch (about 125 to about 250 mils), and the UV barrier is normally less than about 5 mils (about 1 to about 10 mils). The thickness of each component and the structure itself should permit shaping the structure to conform to an underlying substrate.
An optional release layer or liner can be located on one or more sides of the structure. Normally, the release layer is applied onto the tacky mastic material such that once the release layer is removed the mastic adheres to the substrate. If employed, the release layer typically comprises a commercially available high-density polyethylene. Normally, a release agent such as silicone is applied onto the surface of the release layer that contacts the mastic material. Release layers having a release agent are commercially available such as those supplied by Douglas Hanson. The release layer can be of any suitable thickness which is normally about 3 to about 5 mils, e.g., about 4 mils.
The structure can be characterized by several physical and chemical properties. The structure normally has a dielectric strength in accordance

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laminar structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laminar structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laminar structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3123416

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.