Catalyst system and its use in a polymerization process

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Organic compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S125000, C502S126000, C526S127000, C526S131000

Reexamination Certificate

active

06632770

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to catalyst activator compositions, to methods of making these activator compositions, to polymerization catalyst systems containing these activator compositions, and to olefin(s) polymerization processes utilizing same. In particular, the present application relates to an activator composition that includes a non-coordinating or ionizing activator having a siloxane moiety combined with metal or metalloid support having an aluminumalkyl bonded thereto, to catalyst systems containing these compositions, and to polymerization processes utilizing same.
BACKGROUND OF THE INVENTION
Polymerization catalyst compounds, including bulky ligand metallocene catalyst compounds, are typically combined with an activator (or co-catalyst) to yield compositions having a vacant coordination site that will coordinate, insert, and polymerize olefins. Examples of non-coordinating or ionizing activators include ammonium cations, such as N,N-dimethylanilinium, or trityl cations (triphenylcarbenium or trityl
+
) combined with non-coordinating/weakly coordinating borate or aluminate anions, such as, for example tetra(perfluorophenyl)borate. The term non-coordinating anion as used herein applies to non-coordinating anions and coordinating anions that are at most weakly coordinated to the cationic complex so as to be labile to replacement by olefinically or acetylenically unsaturated monomers at the insertion site. Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-B1-0 500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Pat. Nos. 5,153,157, 5,198,401, 5,066,741, 5,206,197, 5,241,025, 5,384,299, 5,447,895 and 5,502,124 and U.S. patent application Ser. No. 08/285,380, filed Aug. 3, 1994, all of which are incorporated herein by reference.
The supporting of ionic activators, however, typically results in a significant loss of activity. Supported non-coordinating anions derived from trisperfluorophenyl boron are described in U.S. Pat. No. 5,427,991. Trisperfluorophenyl boron is shown to be capable of reacting with coupling groups bound to silica through hydroxyl groups to form support bound anionic activators capable of activating transition metal catalyst compounds by protonation. U.S. Pat. Nos. 5,643,847 and 5,972,823 discuss the reaction of Group 13 Lewis acid compounds with metal oxides such as silica and illustrate the reaction of trisperfluorophenyl boron with silanol groups (the hydroxyl groups of silicon) resulting in bound anions capable of protonating transition metal organometallic catalyst compounds to form catalytically active cations counter-balanced by the bound anions.
Immobilized Group 13 Lewis acid catalysts suitable for carbocationic polymerizations are described in U.S. Pat. No. 5,288,677. These Group 13 Lewis acids are said to have the general formula R
n
MX
3−n
where M is a Group 13 metal, R is a monovalent hydrocarbon radical consisting of C
1
to C
12
alkyl, aryl, alkylaryl, arylalkyl and cycloalkyl radicals, n=0 to 3, and X is halogen. Listed Lewis acids include aluminum trichloride, trialkyl aluminums, and alkylaluminum halides. Immobilization is accomplished by reacting these Lewis acids with hydroxyl, halide, amine, alkoxy, secondary alkyl amine, and other groups, where the groups are structurally incorporated in a polymeric chain. James C. W. Chien, Jour. Poly. Sci.: Pt A: Poly. Chem, Vol. 29, 1603-1607 (1991), describes the olefin polymerization utility of methylalumoxane (MAO) reacted with SiO
2
and zirconocenes and describes a covalent bonding of the aluminum atom to the silica through an oxygen atom in the surface hydroxyl groups of the silica.
While these catalyst activator compounds have been described in the art, there is still a need for improved catalyst activators, for activators suitable for anchoring on supports, for catalyst systems utilizing such activators and for processes for polymerize olefin(s) utilizing same.
SUMMARY OF THE INVENTION
This invention provides new polymerization catalyst activator compositions including a non-coordinating or ionizing activator having a siloxane moiety. This invention also provides a new supported catalyst activator composition where the siloxane moiety reacts with an alkylaluminum bonded to a silica support. The invention also provides for methods of making the activator compositions, polymerization catalyst systems including the activator compositions and processes for polymerizing olefin(s) utilizing same.
DETAILED DESCRIPTION OF THE INVENTION
New activator compositions including non-coordinating anions having a siloxane moiety have been discovered. Supporting these new activators is accomplished by reacting the siloxane moiety with an alkylaluminum attached to a silica support. The resulting supported activator compositions have been found to activate polymerization catalyst compounds and produce less fouling when compared to similarly supported systems not including the siloxane moiety.
In one embodiment, the non-coordinating anion activators having a siloxane moiety of the invention are represented by Formulae (Ia) or (Ib):
[L—H]
+
[MQ
n
]

—O—(—SiR
2
—O)
x
—[MQ
n
]

[L—H]
+
  Formula (Ia)
[L—H]
+
[MQ
n
]

—O—(—SiR
2
—O)
x
—R  Formula (Ib)
wherein L is an neutral Lewis base;
[L—H]
+
is a Bronsted acid
n is 3 or 4;
x is an integer, preferably, x is in integer from 1 to 50, preferably 1 to 20, more preferably 1 to 10, even more preferably x is 3 to 8;
[MQ
n
]

is a non-coordinating anion;
M is an element selected from Group 13 of the Periodic Table of the Elements, preferably boron or aluminum, and most preferably boron;
Q is independently a hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, and halosubstituted-hydrocarbyl radicals, said Q having up to 20 carbon atoms with the proviso that in not more than 1 occurrence is Q a halide. Preferably, each Q is a fluorinated hydrocarbyl group having 1 to 20 carbon atoms and more preferably each Q is a fluorinated aryl group and most preferably a fluorinated phenyl group;
R is independently a monoanionic ligand, hydrogen, an hydroxyl group or an alkyl, or combinations thereof. Preferably R is an alkyl group containing 1 to 20 carbon atoms and more preferably 1 to 6 carbon atoms. Most preferably, R is methyl. An alkyl group for purposes herein is defined to be a linear or branched alkyl radical, alkenyl radical, alkynyl radical, cycloalkyl radical or aryl radicals, an acyl radical, aryl radical, alkoxy radical, aryloxy radical, alkylthio radical, dialkylamino radical, alkoxycarbonyl radical, aryloxycarbonyl radical, carbomoyl radicals, alkyl- or dialkyl-carbamoyl radical, acyloxy radicals, acylamino radical, aroylamino radical, straight, branched or cyclic alkylene radical, or combination thereof. An arylalkyl group is defined to be a substituted aryl group; and
[L—H]
+
, the cation component, may include Bronsted acids such as protons or protonated Lewis bases or reducible Lewis acids capable of protonating or abstracting a moiety, such as an akyl or aryl, from the catalyst precursors, described below, resulting in a cationic transition metal species.
The activating cation [L—H]
+
may be a Bronsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums and mixtures thereof, preferably ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, N,N-dimethylaniline, methyldiphenylamine, pyridine, p-bromo N,N-dimethylaniline, p-nitro-N,N-dimethylaniline, phosphoniums from triethylphosphine, triphenylphosphine, and diphenylphosphine, oxomiuns from ethers such as dimethyl ether, diethyl ether,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalyst system and its use in a polymerization process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalyst system and its use in a polymerization process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst system and its use in a polymerization process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3121570

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.