Vehicle wheel

Land vehicles: wheels and axles – Wheel – Tension wheel; e.g. – spoke

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C301S055000, C301S057000, C301S110500

Reexamination Certificate

active

06520595

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an improved vehicle wheel construction, particularly bicycle wheels, including an improved connection means for connecting the spokes to the hub.
Heretofore, the vast majority of bicycle wheels have been constructed using steel wire spokes that are connected, at their inner end, to a central hub component and, at their outer end, to a metallic rim hoop. The spokes are generally of steel construction while the hub and rim may be of aluminum or steel construction. The spokes, hub and rim are each formed as separate components that are then joined together with mechanical connections.
To facilitate the assembly of this bicycle wheel, a certain level of automation has been applied to many of the operations. However, several of the operations still require manual labor, such as the tedious process of threading the individual spokes through the hub, a process commonly referred to as “stuffing” the hub. After the hub is “stuffed” with spokes, the spokes are manually adjusted to align the outer end of the spoke with its corresponding hole in the rim in a process called “lacing”. The “stuffing” and “lacing” operations have never been automated and are commonly tedious and time consuming tasks which require a relatively high level of skill on the part of the operator.
The manufacture of the hub component is also an expensive process. Some hub shells are machined from billet while others are cast or forged and subsequently machined. This machining operation generally requires at least three machining setups. First the cylindrical portions of the hub are turned on lathe, second, the spoke holes in one hub flange are drilled in a rotary index operation, and third, the opposite hub flange is drilled in a separate rotary index operation as well. This multi-step machining process adds considerable expense to the manufacture of the hub shell component.
The tensile forces within the spoke create high stresses at their connection points and the connection between the spoke and the hub flange must therefore be capable of withstanding these stresses. In the current spoke connection arrangement, stresses due to spoke tension are concentrated within a relatively small region of the hub flange, namely the portion of the hub flange material that is radially outward from the spoke hole. This requires that the hub flange construction be based on expensive, higher strength materials and the use of more expensive forming processes such as forging, rather than less costly processes such as die casting or injection molding. Further, these stresses require that the flange be designed with robust thickness, thus adding weight to the wheel assembly.
The spokes of most conventional wheels are constructed of steel wire with a sharp “J” bend close to the headed end and adjacent to the point where they pass through the hole in the flange. The “J” bend region of the spoke is considerably weaker and less ductile due to the overstress of the material to achieve this bend. As would be expected, the “J” bend region is a common breakage point for spokes of the current design. Spoke manufacturers have attempted to compensate for this shortcoming by thickening the wire in this region, but this solution results in considerable extra expense and weight.
It is often an objective to construct wheels with spokes that are flattened along their length to create a more aerodynamic cross-section profile. With a conventional hub flange, this creates a problem where the extra wide spoke cross section must pass through the round hole in the hub flange. The common assembly method, when flattened spokes are utilized, requires the slotting or notching of each individual spoke hole in the two hub flanges to allow the spoke to pass through. This additional operation adds considerable expense and weakens the hub flange as well.
In recent years, some attempt has been made to improve on this conventional wheel design, but the changes have been minor and still retain the same materials and basic configuration. Interestingly, many of these more modern designs are simply a rehash of inventions that are more than 80 years old. This is likely due to the fact that, aside from some more esoteric examples, these modern wheels rely on similar materials and construction techniques as those employed 80 years ago.
Several recent hub designs have recently been introduced which permit a “straight pull” spoke arrangement where the hub flange includes spoke holes which are in a generally radial direction, thus eliminating the requirement for a “J” bend in the spoke. However, since the spoke hole of this new design is in line with the spoke, the spoke has no resistance to spinning within its hole. This can create great difficulty when assembling the wheel, since the opposite end of the spoke includes a threaded connection that requires that the spoke to be fixed in order to facilitate the threaded adjustment. Further, this “straight pull” design does not solve any of the other shortcomings outlined above.
In the past 30 years, there have been significant technological developments in the area of synthetic fibers. Many of these materials have exceptionally high specific tensile properties that are ideally suited for use as the spoke component of the wheel. However, it has proven difficult to adapt these materials to wheel components of a conventional design. The mechanical connections, dictated by current wheel assembly designs, do not allow the present design to take full advantage of these new materials. While some attempts have been made to adapt these materials for use as a spoke, the designs often rely on additional fittings and connections to facilitate their use in wheels of relatively conventional design. A good example of such a design is illustrated in U.S. Pat. No. 4,729,605. These extra fittings add cost and weight to these spokes while the additional connections may compromise the strength of the spoke, thus reducing the potential benefit of these new materials.
Accordingly, it is a principal objective of the present invention to provide a new and improved vehicle wheel construction.
It is a further objective of the present invention to provide a construction as aforesaid which reduces costs and provides a wheel that is light in weight and high in strength and reliability.
Further objects and advantages of the present invention will appear hereinbelow.
SUMMARY OF THE INVENTION
In accordance with the present invention, it has now been found that the foregoing objects and advantages may be readily obtained.
The wheel of the present invention comprises: a peripheral wheel rim; a central wheel hub with an outer flange; a plurality of spokes extending between the rim and hub, wherein said spokes have a first outer peripheral portion connected to said rim and a second inner portion opposed to said first portion; with at least one of the first portion and the second portion of at least one spoke secured to at least one of said rim and hub by hardened molding material which is integral or solid connected with the rim and hub, respectively and preferably adhered or bonded thereto, and wherein the hardened molding material has a surface conforming to a surface of the rim and hub, respectively. The second portions of the spokes are desirably secured to said outer flange and desirably are encapsulated in said hardened molding material. Preferably, a plurality of spokes are so secured and desirably there is a joining interface between the spokes and hardened molding material. The hardened molding material will preferably form at least a portion of a flange. The hardened molding material encapsulates the spoke or spokes and preferably surrounds the entire cross-section thereof.
The present invention obtains many advantages. An integral firm connection is obtained and not simply a mechanical connection. It is an advantage of the present invention that costs are reduced by reducing the assembly labor required to build a wheel. During manufacture, the spokes of the present invention need only to be pla

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle wheel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle wheel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle wheel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120948

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.