Polishing pad having an advantageous micro-texture and...

Abrading – Flexible-member tool – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S056000, C451S443000

Reexamination Certificate

active

06641471

ABSTRACT:

This invention relates generally to polishing pads used for creating a smooth, flat surface on substrates such as glass, semiconductor device wafers, and/or dielectric/metal composites; more specifically, the composition and methods of the present invention are directed to the polishing surface topography of such pads prior to their use in polishing such substrates. Applications especially adapted for use of the present invention include the polishing/planarization of substrates such as silicon, silicon dioxide, tungsten, and copper encountered in integrated circuit fabrication.
U.S. Pat. No. 5,569,062 describes a cutting means for abrading the surface of a polishing pad during polishing. U.S. Pat. No. 5,081,051 describes an elongated blade having a serrated edge pressing against a pad surface, thereby cutting circumferential grooves into the pad surface.
U.S. Pat. No. 5,990,010 describes a preconditioning mechanism or apparatus for preconditioning a polishing pad. This apparatus is used to generate and re-generate micro-texture during polishing pad use.
In semiconductor wafer polishing processes, initial pre-conditioning of the polishing pad, (also referred to as “break-in”), is distinguished from the in-process conditioning of a pad that has already undergone pre-conditioning. In-process conditioning can be concurrent with polishing or intermittently performed on a polishing apparatus between polishing cycles. In general, the initial “start-up” period for a polishing pad can be described as the accumulated polish time required for the removal rate of the substrate (or workpiece) material to level off to a stable steady-state removal rate for a particular type of pad. Preconditioning polishing pads addresses the problems associated with the “start-up” period.
In conventional wafer production, chemical-mechanical polishing conditions for subsequent production wafers may be set from the results obtained from the first production wafer. However, a “first wafer effect” is encountered when a new lot of wafers undergoes polishing on a polishing pad that has been idle for a period of time or when a new (previously unused) polishing pad is installed.
The first wafer effect refers to a difference in the polishing results obtained for the first wafer compared to that obtained for subsequent production wafers. This effect is believed to be due to different polishing conditions encountered by the first wafer. One approach to reduce the first wafer effect is to utilize a blank preconditioning wafer. After preconditioning with such wafers for a certain length of time, the first production wafer is installed in the wafer holder and polished. This on-machine preconditioning procedure is not only cumbersome due to successive loading and unloading of separate cassettes containing preconditioning and production wafers but also leads to increased production costs due to machine downtime associated with preconditioning.
Micro-texture comprises micro-indentations and micro-protrusions. These micro-protrusions typically have a height of less than 50 microns and more preferably less than 10 microns. Micro-indentations have an average depth of less than 50 microns, and more preferably less than 10 microns. Macro-texture comprises both macrogrooves and microgrooves.
Problems associated with in-process conditioning can arise from the need to determine the frequency and duration of conditioning treatment between production polishing runs. This can give rise to further variation and unpredictability due to the variation in surface textures obtained by these techniques. Additionally, in-process conditioning often does not address problems attendant with the Initial break-in period for an as-manufactured polishing pad, for e.g. a pad fabricated of polyurethane.
In the start-up of a polishing process, new pads tend to exhibit a characteristic “break-in” behavior manifested typically in a low initial rate of removal, followed by a rise in removal rate, and a leveling off to a steady-state on a polishing tool. The break-in period may last from 10 minutes to more than one hour, and represents an increasingly significant equipment efficiency loss in the industry. It has been observed that molded pads which have a smooth surface often exhibit an undesirably long, and/or inconsistent break-in time from pad-to-pad or lot-to-lot of polishing pads. On the other hand, a polishing pad that has been over-conditioned may exhibit an initially high unstable removal rate before leveling off to a steady state value. This deviation also contributes to a longer than desired break-in period.
It would be desirable to provide an as-manufactured polishing pad with a shorter and/or more consistent break-in period, with improved predictability in removal rate and/or an increased steady-state removal rate, as compared to manufactured polishing pads of the present state of the art.
A certain degree of texture is generally required for a polishing pad to perform adequately. This surface texture, consisting of peaks (or protrusions) and valleys (or indentations) often aids polishing in the following ways: 1) the valleys act as reservoirs to hold “pools” of polishing slurry so that a constant supply of slurry is available for contact with the surface of the substrate being polished; 2) the peaks come in direct contact with the substrate surface causing “two-body abrasive wear” and/or in conjunction with the slurry particles causing “three-body abrasive wear”; and 3) the texture of the surface acting in conjunction with the shear on the slurry causes eddy currents in the slurry creating wear of the substrate surface by erosion.
It is common practice to use a single number (an “Ra” number) to characterize surface roughness. Ra describes the average deviation of the pad surface from the average amplitude/height of the surface features. Since two drastically different surfaces could have the same Ra values, additional parameters are necessary to better quantify polishing surface micro-texture. Some additional useful parameters are: Average Peak to Valley Roughness (“Rtm”); Peak Density (“R
sa
”); Core Roughness Depth (“Rk”); Reduced Peak Height (“Rpk”); and Reduced Valley Height (“Rvk”).
Peak density indicates how may peaks (protrusions) are available to be in contact with the surface of the substrate being polished. For a given downforce on the pad (the pressure with which the substrate is contacted with the polishing layer of the polishing pad) a low peak density would have fewer contact points and thus each contact point would exert greater pressure on the substrate surface. In contrast, a higher peak density would imply numerous contact points with almost uniform pressure being exerted on the substrate surface. Peak density is characterized through the surface area ratio (“R
SA
”) which is defined as [Surface Area/(Normal Area−1)], wherein, surface area is the measured surface area, and normal area is the area projected on a normal plane.
Average Peak to Valley Roughness (“Rtm”) is a measure of the relative number of peaks and valleys. Peak to valley height characterizes both the height of the peaks and the depth of the valleys in the surface texture. The thickness of the slurry layer (and/or depth of a local pool of slurry) influences the dynamics of slurry and particle flow within the slurry, i.e. whether the flow is laminar or turbulent, the aggressiveness of the turbulence, and the nature of eddy currents. The dynamics of slurry flow is important as it relates to the “erosion wear” mechanism of polishing.
Valley size will indicate the ability of the surface to retain “pools” of slurry as well as the quantity of slurry locally available to perform the polishing. As a relatively large wafer (200 to 300 mm in diameter) passes over a polishing pad it is important to have the slurry available at all points under the wafer to ensure uniformity of polishing. If the polishing pad were featureless it would be difficult for the slurry to penetrate under the wafer to be available in the interior portions of wafer. In this scen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polishing pad having an advantageous micro-texture and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polishing pad having an advantageous micro-texture and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polishing pad having an advantageous micro-texture and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3117118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.