Fragrance compounds

Perfume compositions – Perfume compositions – Ring containing active ingredient

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C512S025000, C512S026000, C512S027000, C568S303000, C568S338000, C568S342000, C568S375000

Reexamination Certificate

active

06551988

ABSTRACT:

FIELD OF THE INVENTION
This invention concerns novel fragrance compounds, their method of production and use in perfumes and perfumed products.
SUMMARY OF THE INVENTION
In one aspect the invention provides 4,8-cyclododecadienyl ketones. These constitute a group of novel ketones, based on a 12 membered ring having two positions of unsaturation, having the general structure shown below, in which side chain R is an alkyl group which may have up to 5 carbon atoms.
For brevity and simplicity, such materials will be referred to herein as “the ketones”, “the novel ketones” or “the ketones of the invention”. The general structure given above indicates that different isomers or a mixture of isomers are included in the term “the ketones”, as discussed in more detail hereinafter. In particular, the preferred compounds of the invention comprise a mixture of the isomers illustrated in FIG.
3
.
The ketones of the invention exhibit woody/amber/musky odour characteristics, and so may be used as such to impart, strengthen or improve the odour of a wide variety of products, or may be used as a component of a perfume (or fragrance composition) to contribute its odour character to the overall odour of such perfume. For the purposes of this invention a perfume is intended to mean a mixture of fragrance materials, if desired mixed with or dissolved in a suitable solvent or mixed with a solid substrate, which is used to impart a desired odour to the skin and/or any product for which an agreeable odour is indispensable or desirable. Examples of such products are: fabric washing powders, washing liquids, fabric softeners and other fabric care products; detergents and household cleaning, scouring and disinfection products; air fresheners, room sprays and pomanders; soaps, bath and shower gels, shampoos, hair conditioners and other personal cleansing products; cosmetics such as creams, ointments, toilet waters, preshave, aftershave, skin and other lotions, talcum powders. body deodorants and antiperspirants, etc.
Other fragrance materials which can be advantageously combined with a ketone according to the invention in a perfume are, for example, natural products such as extracts, essential oils, absolutes, resinoids, resins, concretes etc., but also synthetic materials such as hydrocarbons, alcohols, aldehydes, ketones, ethers, acids, esters, acetals, ketals, nitriles, etc., including saturated and unsaturated compounds, aliphatic, carbocyclic and heterocyclic compounds.
Such fragrance materials are mentioned, for example, in S. Arctander, Perfume and Flavor Chemicals (Montclair, N.J., 1969), in S. Arctander, Perfume and Flavor Materials of Natural Origin (Elizabeth, N.J., 1960) and in “Flavor and Fragrance Materials—1991”, Allured Publishing Co. Wheaton, Ill. USA.
Examples of fragrance materials which can be used in combination with a ketone according to the invention are: geraniol, geranyl acetate, linalol, linalyl acetate, tetrahydrolinalol, citronellol, citronellyl acetate, dihydromyrcenol, dihydromyrcenyl acetate, tetrahydromyrcenol, terpineol, terpinyl acetate, nopol, nopyl acetate, 2-phenyl-ethanol, 2-phenylethyl acetate, benzyl alcohol, benzyl acetate, benzyl salicylate, styrallyl acetate, benzyl benzoate, amyl salicylate, dimethylbenzyl carbinol, trichloromethylphenylcarbinyl acetate, p-tert-butylcyclohexyl acetate, isononyl acetate, vetiveryl acetate, vetiverol, &agr;-hexylcinnamaldehyde, 2-methyl-3-(p-tert-butylphenyl)propanal, 2-methyl-3-(p-iso-propylphenyl)propanal, 3-(p-tert-butylphenyl)propanal, 2,4-dimethylcyclohex-3-enyl-carboxaldehyde, tricyclodecenyl acetate, tricyclodecenyl propionate, 4-(4-hydroxy-4-methylpentyl)-3-cyclohexenecarboxaldehyde, 4-(4-methyl-3-pent-enyl)-3-cyclohexenecarboxaldehyde, 4-acetoxy-3-pentyl-tetrahydropyran, 3-carboxymethyl-2pentylcyclopentane, 2-n-heptylcyclopentanone, 3-methyl-2-pentyl-2-cyclopentenone, n-decanal, n-dodecanal, 9-decenol-1, phenoxyethyl isobutyrate, phenylacetaldehyde dimethylacetal, phenylacetaldehyde diethylacetal, geranyl nitrile, citronellyl nitrile, cedryl acetate, 3-isocamphylcyclohexanol, cedryl methyl ether, isolongifolanone, aubepine nitrile, aubepine, heliotropin, coumarin, eugenol, vanillin, diphenyl oxide, hydroxycitronellal, ionones, methylionones, isomethylionones, irones, cis-3-hexenol and esters thereof, indan musks, tetralin musks, isochroman musks, macrocyclic ketones, macrolactone musks, ethylene brassylate.
Solvents which can be used for perfumes which contain the ketones according to the invention are, for example: ethanol, isopropanol, diethyleneglycol monoethyl ether, dipropylene glycol, diethyl phthalate, triethyl citrate, isopropyl myristate, etc.
The quantities in which a ketone according to the invention can be used in perfumes or in products to be perfumed may vary within wide limits and depend, inter alia, on the nature of the product, on the nature and the quantity of the other components of the perfume in which the ketone is used and on the olfactive effect desired. It is therefore only possible to specify wide limits, which, however, provide sufficient information for the specialist in the art to be able to use the ketone according to the invention for his specific purpose. In perfumes an amount of 0.01% by weight or more of a ketone according to the invention will generally have a clearly perceptible olfactive effect. Preferably the amount is 0.1-80% by weight, more preferably at least 1%. The amount of the ketone according to the invention present in products will generally be at least 10 ppm by weight, preferably at least 100 ppm, more preferably at least 1000 ppm. However, levels of up to about 20% by weight may be used in particular cases, depending on the product to be perfumed.
In a further aspect the invention thus provides a perfume comprising a ketone of the invention in an olfactively effective amount.
The invention also covers a perfumed product comprising a ketone of the invention.
The ketones of the invention may be produced from the aldehyde 4,8-cyclododecadiene-1-carbaldehyde (referred to herein as QRM 2815) by reaction with a range of Grignard reagents (RMgX), followed by chromic acid oxidation, as illustrated in
FIG. 1. A
range of ketones in accordance with the invention have been produced in this way, with side chains R and odour properties as follows:
QRM
Odour
R
number
Description
Chemical Name
Methyl
2828
Not
1-(4,8-cyclododecadienyl)-1-ethanone
screened
Ethyl
2843
Cedarwood,
1-(4,8-cyclododecadienyl)-1-
amber,
propanone
pepper
n-propyl
3101
Woody,
1-(4,8-cyclododecadienyl)-1-
musk
butanone
iso-propyl
2885
Woody,
1-(4,8-cyclododecadienyl)-2-methyl-
amber
1-propanone
n-butyl
3102
Not screened
1-(4,8-cyclododecadienyl)-1-
pentanone
sec-butyl
3056
Amber/
1-(4,8-cyclododecadienyl)-2-methyl-
woody,
1-butanone
fruity
2-propenyl
2924
Amber/
1-(4,8-cyclododecadienyl)-2-buten-
woody,
1-one
chypre
The side chain R may thus be a straight chain or branched, saturated or unsaturated. R has up to 5 carbon atoms, resulting in a molecule having at least 18 carbon atoms. Molecules with more than 18 carbon atoms tend to have a vapour pressure that is too low for the molecule to have odour value.
Isopropylmagnesium chloride is conveniently used as the Grignard reagent to produce the ketone QRM 2885 in this way, with other Grignard reagents (RMgX) being used as appropriate in analogous manner to produce other ketones.
The ketones can exist in different isomeric forms, and the invention covers each isomeric form alone, and mixtures of different isomeric forms. The preparative technique used has a major influence on the relative proportions of the different isomeric forms.
The aldehyde QRM 2815 may be produced from 1,5,9-cyclododecatriene, which is a cheap and readily accessible starting material, by the reaction shown in
FIG. 2
, in which the cyclododecatriene is converted to cyclododecatriene monoepoxide by reaction with a peroxy acid followed by catalysed isomerisation. The reaction is described in more detail below.
An alternative preparative route to the aldehyde comprises hydrofomylation of 1,5,9-cyc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fragrance compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fragrance compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fragrance compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3113349

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.