Support matrix for integrated semiconductors, and method for...

Active solid-state devices (e.g. – transistors – solid-state diode – Lead frame

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S667000, C257S668000, C257S673000, C257S676000, C257S693000, C257S701000

Reexamination Certificate

active

06605864

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a support matrix for integrated semiconductors having a barrier at the bonding leads, and a method for producing such a support matrix.
Modern miniature housings for integrated semiconductors such as &mgr;BGA, FBGA, etc. contain a support matrix in addition to the actual encapsulation and a silicon chip. The support matrix serves for stabilization and electrical connection of contact pads of the semiconductor chip to external contacts of the housing. For this purpose, the support matrix has a frame, for example a suitably shaped polyimide film having a thickness of 50 &mgr;m, for example, and also a conductor track structure that connects the contact pads to one another. Usually, the semiconductor chip is connected to one side of the support matrix, while contacts for externally connecting the housing on a circuit board or the like are disposed on the other side of the support matrix. The conductor track structure is usually disposed on that side of the frame on which the semiconductor chip is also located, while the external contacts are located on the other side. The connection between the conductor track structures and the external contacts is achieved through holes in the frame.
The actual connection between the conductor track structures and the semiconductor chip is effected by so-called bonding leads, that is to say tongue-like regions on the conductor track structure which are bent or can be bent towards the semiconductor chip in order to make contact with the contact pads of the semiconductor chip. The bonding leads are then bonded to the semiconductor, for example by welding, microwelding methods or soldering.
In a customary procedure, the bonding leads are concentrated in a so-called bonding channel. The bonding channel is an opening in the frame that allows access to the bonding leads from the side remote from the semiconductor chip. During the mounting of the support matrix onto the semiconductor chip, from that side of the support matrix that is remote from the semiconductor chip, the bonding leads are pressed by bonding punches towards the semiconductor chip and bonded there.
The bonding leads are connected to the remainder of the conductor track structures via a so-called anchor. On the side opposite to the anchor there is often a mating anchor that is connected to the actual bonding region of the bonding lead via a desired breaking point. When the bonding region is pressed onto the contact point of the semiconductor chip, the desired breaking point tears.
Between the support matrix and the semiconductor chip spacers are often inserted, so-called nubbins, which bring about the desired spacing between the two components. The nubbins are usually produced from a silicone material and applied to the support matrix by screen printing. In order to stabilize the connection between the support matrix and the semiconductor chip, the bonding channels are filled with a suitable material.
During the production of the nubbins by screen printing, the situation where silicone material passes onto the electrical connecting lines, in particular the bonding leads, on account of insufficient sealing by the printing screen cannot be ruled out. As a result of the specific properties of the silicone material, the latter creeps as far as the areas of the connecting lines that, in the further process sequence, serve for making contact with the semiconductor chip. Since the silicone material is thus present between the bonding region of the bonding lead and the contact pad of the semiconductor chip, electrical contact-connection cannot be achieved, or at least cannot be reliably ensured, during the bonding operation. In order to prevent such problems, attempts have hitherto been made, using diverse preventive measures, such as the cyclic cleaning of the screens during the production process, or using various post treatment methods, such as plasma cleaning or chemical cleaning, to prevent the contamination of the bonding regions of the bonding leads. However, this has not made it possible to achieve a reliable contact pad freed of silicone contamination in all cases.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a support matrix for integrated semiconductors, and a method for producing it which overcomes the above-mentioned disadvantages of the prior art devices and methods of this general type, which can reliably prevent creepage of the silicone material into the bonding region.
With the foregoing and other objects in view there is provided, in accordance with the invention, a support matrix for integrated semiconductors. The support matrix includes a frame and conductor track structures running on the frame. The conductor track structures have at least one bonding lead for connecting the conductor track structures to an integrated semiconductor. Flowable silicon structures are disposed in a region of the bonding lead and serve to space apart the support matrix and the integrated semiconductor. The bonding lead has a bonding region and the groove is formed between the bonding region and the conductor track structures. The groove functions as a barrier for preventing a flow of the flowable silicon structures onto the bonding region.
The invention is first directed at the support matrix for integrated semiconductors having the frame, the conductor track structures and the at least one bonding lead for connecting the conductor track structures to the integrated semiconductor. The support matrix is characterized in that the bonding lead has, between a bonding region and the conductor track structures, at least one barrier for preventing the flow of a flowable material from the bonding region.
Consequently, the inventive basic concept is that, instead of implementing costly cleaning measures, the bonding leads are reconfigured in such a way that an integrated barrier prevents the creepage of the silicone material used for the nubbins into the bonding region.
The barrier constitutes a parting line for the flowable material between the conductor tracks and the frame, on the one hand, and the bonding lead, on the other hand. The barrier is expediently oriented in such a way that it reaches over the entire bonding lead transversely with respect to the possible flow direction of the silicone material. The flowable material is preferably silicone for forming structures on the support matrix. The structures may be spacers in this case.
In principle, the invention is also suitable for preventing flowable materials other than the silicone materials used for nubbins from creeping on the bonding region, so that the invention can also be used for other technologies in the area of producing support matrices and semiconductors.
The bonding lead may have an anchor for connecting to the frame and the barrier may be disposed in the region of the anchor.
Furthermore, the bonding lead according to the invention may have a mating anchor for connecting its end remote from the anchor to the frame, a second barrier is disposed in the region of the mating anchor. This preferred embodiment can be used if the bonding leads have a mating anchor and a desired breaking point which is connected to the frame on that side of the bonding channel which is opposite to the anchor, as described above. In this case, it may be necessary to protect against both possible flow directions of the flowable material using barriers.
Various possibilities are available for the configuration of the barrier. Thus, the barrier may have a groove or a wall. When a groove is used, the edge effect for flow and adhesion of flowable material is exploited, in which a flowable material is unable to flow around an edge directed downward. In this way, a groove can constitute an effective barrier for liquids. The use of a wall, that is to say projecting barrier element, can also have a limiting effect that is dependent on the adhesion properties of the flowable material on the bonding lead.
Finally, the barrier may have a region with a parti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Support matrix for integrated semiconductors, and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Support matrix for integrated semiconductors, and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Support matrix for integrated semiconductors, and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3111637

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.