Air outlet device for a vehicle, especially for an airplane

Ventilation – Vehicle – Aircraft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C454S071000

Reexamination Certificate

active

06589109

ABSTRACT:

This non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No. 101 01 232.2, filed in Germany on Jan. 11, 2001, which is herein incorporated by reference.
BACKGROUND OF THE INVENTION
The present invention relates to an air outlet device for a vehicle.
As a common feature in vehicles, particularly in airplanes and busses, it is provided that each passenger can set a cooling air stream individually for his or her convenience by means of an air discharge nozzle arranged in the ceiling above the seat. Such air outlet devices (“air showers”) comprise a nozzle body to be selectively closed and set to different spatial configurations so that the discharged air stream can be oriented correspondingly.
An air outlet device of the above type is known e.g. from U.S. Pat. No. 5,399,119. This air outlet device comprises a nozzle body with an air intake opening and an air outlet opening. Arranged within the nozzle body is a coaxial valve body which, by turning the nozzle body, can be displaced between a closed position for closing the air outlet opening and one of several opening positions arranged to open the air outlet opening to a higher or lesser extent. The nozzle body is supported for rotation on a holding element which in turn is supported in a holding recess formed in a ceiling panel above the seat.
Particularly in aircraft construction, the desired reduction of weight dictates a light-weighted and nonetheless stable construction of the Individual components. The above mentioned known air outlet device is of a rather material-intensive and thus heavy design. Further, the known air outlet device comprises a very small operating member for the nozzle body because the operating member for the nozzle body is inserted from inside into the holding member and will then project therefrom through an accommodating opening. Thus, the diameter of the operating member can be at best as large as the diameter of the accommodating opening while a still larger diameter is not possible. Further, in air outlet devices of the type discussed herein and thus also in the above known air outlet device, the valve body is visible from the outside, with inherent design restrictions because the valve body should be adapted in color to the surrounding area of the passenger cabin. Further, it is to be considered that the discharged air stream may cause flow noises when passing the nozzle body. Thus, for added passenger comfort, it is desirable to suppress such noises as far as possible.
Therefore, in air outlet devices of the above type, a necessity exists for improvements in various regards, as outlined above.
SUMMARY OF THE INVENTION
According to a first aspect of the instant invention, there is proposed an air outlet device for a vehicle, especially for an airplane, comprising
a nozzle body with an air intake opening and an air outlet opening,
a holding element formed with an accommodating opening having the nozzle body supported therein for rotation about a longitudinal axis extending through the air intake opening and the air outlet opening, and
a valve body arranged coaxially within the nozzle body and guided by the holding element, wherein, upon rotation of the nozzle body, the valve body can be displaced in the nozzle body between a closing position for blocking the air outlet opening and a maximum opening position for clearing the air outlet opening to the maximum extent,
the valve body being of a hollow configuration.
To reduce the constructional weight, the air outlet device according to the present invention comprises a valve body which is of a hollow configuration. The valve body is preferably formed in two parts, notably in such a manner that the valve body is closed on its end facing towards the air intake opening of the nozzle body and is open at the closing end facing towards the air outlet opening. Thus, a valve body of this type is of a dome-shaped hollow design which can be produced in a simple manner, e.g. by injection molding. The open closing end can be closed by a cover member forming the second part of the two-part configuration of the valve body. This cover member, which can be provided after the manner of a (closure) plug, can be of a different color from the valve body. This makes it possible to adapt the design of the valve body to the interior design of the passenger cabin of the vehicle (airplane).
The feature that the valve body has its closing end provided with a cover member can be realized also in valve bodies which are solid, i.e. not hollow. Thus, within the scope of the present invention, the adapting of the valve body design is a feature in its own right.
According to a preferred embodiment of the invention, the valve body is in guiding engagement with the holding element via a coupling member. This guiding engagement can be e.g. a threaded engagement wherein, in this case, the coupling member is provided with an outer thread cooperating with an inner thread of the holding element. For this purpose, the coupling member comprises a continuous ring having its outer side provided with the thread. For reasons of weight reduction, the inner thread of the holding element is preferably segmented, i.e. it does not extend along 360°. Instead, the holding element comprises individual, inwardly projecting partial segments which on their inwardly directed inner side are formed with a threaded structure.
When the nozzle body is rotated, the coupling member of the valve body is taken along with the valve body and thereby is rotated. Thus, the valve body is rotated when axially displaced within the nozzle body upon rotation of the latter. For this purpose, the nozzle body is formed with receiving slots extending radially through the nozzle body wall and being open towards the air intake end of the nozzle body. In such an arrangement, the coupling member of the valve body is provided with spoke-like webs immersed into the receiving slots of the nozzle body. When the nozzle body is rotated and the valve body is thus displaced, these webs will be axially displaced within the slots.
The webs, like the valve body, are subjected to the air flow. With regard to the suppression of flow noises and the reduction of the flow resistance, it is of advantage if the webs (and the valve body) have a streamlined shape under aerodynamic aspects. In this respect, it is suitable if the webs, when viewed in cross section, are formed in drop shapes in a plane transverse to the radial extension of the webs and to a longitudinal axis of the nozzle body or valve body. In this arrangement, the webs taper in the direction of their edges facing toward the air outlet opening.
Preferably, the valve body and the coupling member are formed as one part, particularly as an injection-molded (plastic) member.
By way of alternative to the above described threaded engagement between the coupling member and the holding element, the coupling member of the valve body can be guided In axial guide grooves of the holding element, and the axial displacement of the valve body can be performed through slots in the nozzle body wall which are formed in ascending orientation in the manner of a thread. Also in this case, it is of course possible to form the valve body and the coupling member as one part, e.g. as an injection-molded member of plastic or the like.
The forming of the valve body as an injection-molded (plastic) member results in the formation of an undesired sprue cone on the valve body. This projection impairs the homogeneity of the surface of the valve body, which under the aspect of flow technology will cause a noise to be generated. Preferably, this sprue cone is accommodated completely within a trough-like spherical deepened portion on that end of the valve body which is facing toward the air intake opening of the nozzle body and is subjected to the onflow of air. Beyond this measure, it is preferred under the aspects of flow technology and particularly for the suppression of noise development that the end of the valve body subjected to the onflow of air has a rounded shape, i.e. is su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Air outlet device for a vehicle, especially for an airplane does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Air outlet device for a vehicle, especially for an airplane, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air outlet device for a vehicle, especially for an airplane will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105803

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.