Method and apparatus for measurement of in vivo air volumes

Surgery – Diagnostic testing – Respiratory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S533000, C600S540000

Reexamination Certificate

active

06626845

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to instruments, particularly medical and research instruments that are used for assessing gas volumes of air cavities, particularly, air cavities that may exhibit a compliance to changes in pressure, such as in vivo volumes of the lung, thorax, oropharynx and/or nasopharynx.
BACKGROUND OF THE INVENTION
Over the years, a number of methods have been used to determine the functional residual capacity (FRC) of the lung and related thoracic gas measures of a patient. These methods have involved gas dilution techniques, body plethysmography, and radiographic techniques. Gas dilution techniques require the patient to inhale special gases and necessitate special ventilation facilities (see, for example, U.S. Pat. No. 6,139,506). Radiographic techniques require a patient to be exposed to radiation. Additionally, static chest wall and abdominal composure by the patient is required during imaging. Plethysmography requires enclosing the patient or most of the patient's body (see, for example, U.S. Pat. Nos. 5,513,648 and 5,159,935) in a sealed enclosure or at the very least outfitting the patient with impedance belts about the torso (see, for example, U.S. Pat. No. 5,857,459). For these methods, lung pressurization maneuvers are performed by the patient during which changes in lung volume are simultaneously assessed by the plethysmograph. The general gas equation, relating pressure and volume and changes in pressure and volume, is used to determine the unknown volume. Current plethysmographic techniques to assess thoracic gas volume suffer from artifacts due to stomach gas, which causes compliance during testing maneuvers.
A method to estimate “trapped” air volume (not absolute volume) in lung of paralyzed patients has been proposed by obtaining a volume/pressure curve upon forced ventilation of the patient's lung (see U.S. Pat. No. 4,844,085). The large volume of gas exchange with this method introduces errors that must be compensated and the forced pressurization/de-pressurization precludes normal breathing of the patient during testing. None of the above methods allow convenient isolation and measurement of the volume of the oral cavity and nasal pharynx.
U.S. Pat. No. 5,937,854 discloses a method and apparatus for ventilator pressure and optimization by administering fixed stepwise pressure changes to the lungs of a patient and measuring the lung volume change resulting from each pressure change. The lung volume change is measured by using the RIP technique. This utilizes two elastic cloth bands containing insulated wires, which encircle the patient's rib cage and abdomen and are connected to an oscillator module.
OBJECTS AND ADVANTAGES
It is accordingly a principal object of the present invention to provide a non-invasive device and method for measuring in vivo gas volumes of a patient, including lung and pharyngeal volumes and, particularly, to obtain volume measurement in the presence of compliance.
An additional object of the present invention is to provide an inexpensive device and method that measures the lung volume of a patient independent of a sealed chamber or ventilated airspace and that does not require outfitting the patient with respiratory bands.
A further object of the present invention is to provide a device and method to measure lung and airway volume of a patient by a means that is not dependent upon patient cooperation and participation. In other words, the patient is only required “to breathe” and not to perform specialized pressurization maneuvers to within a certain tolerance. Therefore yet another object of the present invention is to provide a device for measuring the lung volume of the immobile, paralyzed, and “intensive care” or “special care” patient.
Accordingly, as will be disclosed in detail below, several advantages of the present invention are the measurement of in vivo volumes with a device that is smaller and more portable than existing systems, a device and method that is less complicated for clinicians and less troublesome for patients, and a device and method that serves a greater patient population, including veterinary applications, than is heretofore possible.
SUMMARY OF THE INVENTION
The purpose of the present invention is to provide a non-radiographic, noninvasive, portable, and non-confining apparatus for measuring gas volumes of in vivo cavities, including but not limited to lung volume and volumes of the thorax, oral and nasal pharynx. Further, the apparatus does not require sophisticated lung pressurization maneuvers to be performed by the patient or the outfitting of patients with thoracic position transducers. The present invention is intended therefore to serve a comprehensive patient population, including the bedridden, unawake, paralyzed, and sedated patient. Further, the device does not require the patient to inhale special gases or be subjected to imaging radiation.
It is recognized that various methods exist for assessing lung volume. The present invention represents improvements in the apparatus of boxless measurement of lung volume that can take the form of several embodiments. The detailed embodiments described herein are taken as representative or exemplary of those in which the improvements of the invention may be incorporated and are not presented as being limited in any manner.
The invention is directed to an apparatus for measuring gas volumes of an in vivo cavity of unknown compliance in a subject, particularly a patient comprising:
(a) an air cavity with induction means for inducing calibrated volume changes in said air cavity;
(b) a means for interfacing said air cavity to the in vivo volume of the subject to be measured;
(c) a means connected to said air cavity for measuring air pressure variations; and
(d) a control means electrically coupled to said induction means and measuring and processing means for calculating the gas volume in said subject.
In one embodiment, the subject is a human patient; in another embodiment the subject is a mammal; in yet another embodiment, the subject is a non-living item with a cavity exhibiting compliance, such as a balloon, a tank containing a bladder, or a tank with an inverted floating cover such as one used to contain hydrogen or natural gas.
The apparatus interfaces an air cavity to particularly the patient by means of a facial mask, nasal mask, mouthpiece or tubes. In a preferred embodiment, the interfacing means is a facial mask so that a common air cavity is formed with the patient via the oral and/or nasal orifices. The apparatus includes a respiratory access valve connected to its inner cavity that, when open, permits the patient to exchange air with the external environment in the manner of ordinary breathing (means for interfacing said air cavity to ambient environment) and, when closed, permits artificial pressurization of the cavity by means of a calibrated volume-changing piston (means for inducing volume change). The apparatus includes a calibrated device to assess air pressure changes occurring inside the common air cavity and a device to assess air pressure of the ambient environment.
The valve interfaces between the external environment and the inner cavity of the apparatus, and is opened or closed by passive means according to breathing airway pressure of the patient. The valve is constructed in such a manner as to remain open while the patient is in the process of inhaling or exhaling, and to momentarily close during the period of time that the patient is changing breathing modality from exhalation to inhalation, when cavity pressure is beneath the shutter threshold. The pressure change in the system due to the induced change in volume is, in itself, insufficient to open the valve.
The invention is also directed to a method for measuring a gas volume of an in vivo cavity in a subject utilizing the apparatus of the present invention comprising
(a) attaching said apparatus to said subject;
(b) measuring the barometric pressure in an area near the subject;
(c) measuring changes in induced pressure and volum

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for measurement of in vivo air volumes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for measurement of in vivo air volumes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measurement of in vivo air volumes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.