Methods for identifying cellular responses attributable to...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007200, C435S007400, C435S069100, C435S183000, C435S194000, C435S325000, C435S343000, C536S023100

Reexamination Certificate

active

06610483

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides a method for the identification of a pattern of changes in cellular responses induced by the selective inhibition of a signaling molecule, and methods for identifying selective inhibitors thereof.
BACKGROUND OF THE INVENTION
Cell-to-cell communications in a multicellular organism are fast and allow cells to respond to one another in diverse and complex ways. Typically, the intracellular signals are molecules called “ligands,” and a given ligand can bind to a particular type of receptor on the surface of those cells that are to receive that signal, but this simple ligand binding alone is not enough to provide for the complex responses that the receiving cells may need to make. Cells therefore amplify and add complexity to this signal through complex, often cascading, mechanisms leading to the rapid modulation of catalytic activities inside the cell, which in turn can produce complex, and sometimes dramatic, intracellular responses. This process as a whole, from initial ligand binding to completion of the intracellular response, is called “signal transduction.”
Signal transduction is often accomplished by the activation of intracellular enzymes that can act upon other enzymes and change their catalytic activity. This may lead to increases or decreases in the activity certain metabolic pathways, or may lead to even large intracellular changes, for example, the initiation of specific patterns of gene expression. The ability of one enzyme to alter the activity of other enzymes generally indicates that the enzyme is involved in cellular signal transduction.
The most common covalent modification used in signal transduction processes is phosphorylation, which results in the alteration of the activity of those enzymes which become phosphorylated. This phosphorylation is catalyzed by enzymes known as ATP-dependent phosphotransferases which are often simply referred to as “kinases.”These include, among others, protein kinases, lipid kinases, inositol kinases, non-classical protein kinases, histidine kinases, aspartyl kinases, nucleoside kinases, and polynucleotide kinases.
Several key features of such kinases make them ideally suited as signaling proteins. One is that they often have overlapping target substrate specificities, which allows “cross-talk” among different signaling pathways, thus allowing for the integration of different signals (1). This is thought to be a result of the need for each kinase to phosphorylate several substrates before a response is elicited, which in turn provides for many types of diverse signaling outcomes. For example, a given kinase may in one instance transmit a growth inhibitory signal and in another instance transmit a growth promoting signal, depending on the structure of the extracellular ligand that has bound to the cell surface (2).
A second key feature is that the kinases are organized into several modular functional regions, or “domains” (3). One domain known as “SH3” is a proline-rich region of 55-70 amino acids in length, and another, known as “SH2,” is a phosphotyrosine-binding region of about 100 amino acids in length. These two domains are believed to be involved in recognizing and binding to the protein substrates. The third domain, “SH1,” is comprised of about 270 amino acids, and is the domain which is responsible for catalysis. It also contains the binding site for the nucleoside triphosphate which is used as energy source and phosphate donor (3). Other domains, including myristylation and palmitylation sites, along with SH2 and SH3, are responsible for assembling multiprotein complexes which guide the catalytic domain to the correct targets (3,22,23). Molecular recognition by the various domains has been studied using by x-ray diffraction and by using NMR methods (24-28).
These domains appear to have been mixed and matched through evolution to produce the large protein kinase “family.” As many as 2000 kinases are thought to be encoded in the mammalian genome (4), and over 250 kinases have already been identified. The large number of kinases and the large number of phosphorylation-modulated enzymes that are known to exist inside cells allow for rapid signal amplification and multiple points of regulation.
A third key feature of the kinases is their speed. The kinetics of phosphorylation and dephosphorylation is extremely rapid in many cells (on a millisecond time scale), providing for rapid responses and short recovery times, which in turn makes repeated signal transmission possible (5).
These features of the kinases have apparently led them to be involved in a vast array of different intracellular signal transduction mechanisms. For example, growth factors, transcription factors, hormones, cell cycle regulatory proteins, and many other classes of cellular regulators utilize tyrosine kinases in their signaling cascades (12,13). Tyrosine kinases catalytically attach a phosphate to one or more tyrosine residues on their protein substrates. The tyrosine kinases include proteins with many diverse functions including the cell cycle control element c-abl (14-16), epidermal growth factor receptor which contains a cytoplasmic tyrosine kinase domain (12),c-src, a non-receptor tyrosine kinase involved in many immune cell functions (13), and Tyk2, a cytoplasmic tyrosine kinase which is involved in phosphorylation of the p91 protein which is translocated to the nucleus upon receptor stimulation and functions as a transcription factor (17).
The serine/threonine kinases make up much if not all of the remainder of the kinase family; these catalytically phosphorylate serine and threonine residues in their protein substrates, and they have similarly diverse roles. They share homology in the 270 amino acid catalytic domain with tyrosine kinases. As such, although the discussion which follows focuses more particularly on the tyrosine kinases, that discussion is generally applicable to the serine/threonine kinases as well. An example of a protein kinase in yeast is CDC
28
. This is the major protein kinase in yeast which controls the cell cycle.
One important avenue for deciphering the role and understanding the function of enzymes, both in vitro and in vivo, is the use of specific enzyme inhibitors. If one or more compound can be found that will inhibit the enzyme, the inhibitor can be used to modulate the enzyme's activity, and the effects of that decrease can be observed. Such approaches have been instrumental in deciphering many of the pathways of intermediary metabolism, and have also been important in learning about enzyme kinetics and determining catalytic mechanisms.
In addition, such inhibitors are among the most important pharmaceutical compounds known. For example, aspirin (acetylsalicylic acid) is such an inhibitor. It inhibits an enzyme that catalyzes the first step in prostaglandin synthesis, thus inhibiting the formation of prostaglandins, which are involved in producing pain (72). Traditional drug discovery can be characterized as the design and modification of compounds designed specifically to bind to and inactivate a disease-causing protein; the relative success of such an effort depends upon the selectivity of the drug for the target protein and its lack of inhibition of non-disease associated enzymes with similar enzyme activities.
Such approaches would appear to be promising ways to develop treatments for cancer, since many human cancers are caused by dysregulation of a normal protein (e.g., when a proto-oncogene is converted to an oncogene through a gene translocation). And since kinases are key regulators, they have turned out to be very common proto-oncogenes, and thus ideal drug design targets. The process of designing selective inhibitors is relatively simple in cases where few similar enzymes are present in the target organism, for example in cases where inhibitors of a protein unique to bacteria can be targeted. But unfortunately, the similarities between the kinases and their large number has frustrated the discovery and design of specific inhibitors, and has blocked m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for identifying cellular responses attributable to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for identifying cellular responses attributable to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for identifying cellular responses attributable to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104147

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.