Thermoplastic resin composition

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S243000, C525S293000, C525S316000, C525S328300, C525S329100, C525S331700, C525S331900, C526S333000, C526S326000

Reexamination Certificate

active

06610787

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a thermoplastic resin composition, particularly one having excellent moldability and capable of providing molded products with high mechanical strength and excellent matte surface appearance. The thermoplastic resin composition according to the present invention is suited for use as a molding material for the sheet-like products with a matte surface.
Rubber-reinforced thermoplastic resins are popularly used for various purposes because of high impact resistance, good moldability and surface gloss of their molded products. In some uses, however, there are required the molded products having their surfaces matte-finished without affecting the other properties of the products.
As conventional means for matting the surface of the molded products, a method is known in which an oxide or carbonate of titanium, magnesium, calcium or the like is added to a rubber-reinforced thermoplastic resin (Japanese Patent Publication (KOKOKU) No. 63-67818). This method, however, has the disadvantage of greatly impairing the mechanical properties, especially mechanical strength, of the resin, and is also incapable of effecting always uniform matting of the molded article surface.
It is also well known to add a rubber-like polymer to a rubber-reinforced thermoplastic resin for matting the molded article surface. This method has the problem that the addition of a rubber-like polymer can adversely affect the mechanical properties of the resin, especially its hardness or rigidity, and is also liable to produce a foreign matter on the molded article surface to greatly detract the commercial value of the molded article.
There is further known a method comprising the addition of a resin material whose molecular structure has been three-dimensioned by a crosslinkable monomer (Japanese Patent Publication (KOKOKU) No. 3-59939), but this method has the disadvantages of causing non-uniform matting of the molded article surface and deteriorating moldability.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a thermoplastic resin composition having excellent moldability and capable of providing the molded products with high mechanical strength and excellent matte surface appearance.
To attain the above aim, in the first aspect of the present invention, there is provided a thermoplastic resin composition comprising a rubber-reinforced thermoplastic resin as component (A) and an ethylene-&agr;-olefin copolymer having a Mooney viscosity (ML1+4, 100° C.) of 40 to 110 as component (B), the amount of component (B) being 1 to 70 parts by weight based on 100 parts by weight of component (A).
In the second aspect of the present invention, there is provided a thermoplastic resin composition comprising a rubber-reinforced thermoplastic resin as component (A) and an ethylene-&agr;-olefin copolymer having a Mooney viscosity (ML1+4, 100° C.) of 40 to 110 as component (B), the amount of component (B) being 1 to 70 parts by weight based on 100 parts by weight of component (A),
said component (A) comprising:
100 parts by weight of a rubber-reinforced thermoplastic resin (A1) obtained by polymerizing 5 to 94% by weight of an aromatic vinyl compound, 1 to 90% by weight of a vinyl cyanide compound and 0 to 89% by weight of other copolymerizable compound (the total of the ratios of the respective components being 100% by weight) in the presence of 5 to 80% by weight of a rubber-like polymer (i) which is an ethylene-&agr;-olefin-(nonconjugated diene) copolymer, and
1 to 70 parts by weight of a rubber-reinforced thermoplastic resin (A2) obtained by polymerizing 5 to 94% by weight of an aromatic vinyl compound, 1 to 90% by weight of a vinyl cyanide compound and 0 to 89% by weight of other copolymerizable compound (the total of the ratios of the respective components being 100% by weight) in the presence of 5 to 80% by weight of a rubber-like polymer (ii),
which rubber-like polymer (ii) is a hydrogenated block copolymer obtained by hydrogenating a block copolymer comprising an aromatic vinyl compound unit and a conjugated diene compound unit, the number-average molecular weight (Mn) of the block copolymer being 5,000 to 1,000,000, the ratio of weight-average molecular weight (Mw) to number-average molecular weight (Mn), Mw/Mn, being not more than 10, the vinyl bond content of the diene moiety being 10 to 90%, and the hydrogenation rate of the olefinic unsaturated bond is not less than 70%.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. The thermoplastic resin composition according to the present invention comprises a rubber-reinforced thermoplastic resin as component (A) and an ethylene-&agr;-olefin copolymer having a Mooney viscosity (ML1+4, 100° C.) of 40 to 110 as component (B).
<Component (A)>
Component (A) is not specifically defined in the present invention, but there are preferably used rubber-reinforced thermoplastic resins which are obtained by polymerizing aromatic vinyl compounds, vinyl cyanide compounds and other copolymerizable compounds in the presence of a rubber-like polymer. Mixtures of these rubber-reinforced thermoplastic resins and (co)polymers of the said monomers are also usable preferably. Actual examples of these components are explained below successively. Rubber-like polymers will be described later for the convenience of explanation.
Examples of the said aromatic vinyl compounds include styrene, &agr;-methylstyrene, p-methylstyrene and bromostyrene. These compounds may be used alone or as a combination of two or more. Among these compounds, styrene and &agr;-methylstyrene are preferred.
Examples of the said vinyl cyanide compounds include acrylonitrile and methacrylonitrile. These compounds may be used alone or as a combination of two or more. Acrylonitrile is preferred.
Examples of the said other copolymerizable compounds include (meth)acrylic ester compounds such as methyl methacrylate and methyl acrylate, maleimide compounds such as N-phenylmaleimide and N-cyclohexylmaleide, and compounds of unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and fumaric acid. These compounds may be used alone or as a combination of two or more.
Here, the said rubber-like polymers are explained. The rubber-like polymers used in the present invention are not specifically defined, and it is possible to use both diene type and non-diene type rubber-like polymers.
Examples of the diene type rubber-like polymers include natural rubber, polyisoprene, polybutadiene, styrene-butadiene copolymer, butadiene-acrylonitrile copolymer, isobutyrene-isoprene copolymer, and aromatic vinyl monomer-conjugated diene block copolymers (such as styrene-butadiene block copolymer, styrene-isoprene-styrene block copolymer and styrene-butadiene-styrene block copolymer).
Examples of the non-diene type rubber-like polymers include hydrogenated conjugated diene (co)polymer, ethylene-&agr;-olefin-(nonconjugated diene) copolymers (such as ethylene-propylene-(nonconjugated diene) copolymer and ethylene-butene-(nonconjugated diene) copolymer), acrylic rubber, polyurethane rubber and silicone rubber. Parenthesizing of nonconjugated diene is intended to indicate that the nonconjugated diene is an optional component.
In view of weather resistance of the produced thermoplastic resin composition, preferably a nonconjugated diene type rubber-like polymer, more preferably an ethylene-&agr;-olefin-(nonconjugated diene) copolymer, acrylic rubber or a hydrogenated conjugated diene (co)polymer is used. Use of an ethylene-&agr;-olefin-(nonconjugated diene) copolymer is especially preferred.
As ethylene-&agr;-olefin-(nonconjugated diene) copolymers (which may hereinafter be referred to as “rubber-like polymers (i)”, there can be exemplified, ethylene-&agr;-olefin rubbers such as ethylene-&agr;-olefin random copolymer rubber and ethylene-&agr;-olefin-nonconjugated diene random copolymer rubber.
Examples of the said rubber-like polymers (i) are the copolymer rubbers obtained by copolymerizing t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermoplastic resin composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermoplastic resin composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoplastic resin composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3103122

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.