Methods and systems for intraluminally directed vascular...

Surgery – Instruments – Surgical mesh – connector – clip – clamp or band

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S158000

Reexamination Certificate

active

06623494

ABSTRACT:

BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention is directed generally to vascular anastomosis methods, systems and related apparatus. More specifically the present invention is directed to intraluminally directed anastomosis methods, systems and apparatus.
2. Relevant Technology
An endoscope is an instrument for the examination of the interior of a canal or hollow viscus. Most endoscopic procedures operate according to passive techniques, namely exploring and diagnosing. However, some endoscopic procedures have evolved so that they operate according to active or interventional procedures. In addition to exploring and diagnosing, active endoscopic procedures perform corrective tasks such as therapeutic and/or surgical tasks.
Active endoscopic procedures are highly effective because of a plurality of reasons. These reasons include: (a) minimal invasion of the patient's body; (b) reduced requirements of medical facilities and medical skill, and (c) quasi-simultaneity, if so desired, of the exploration, diagnosis, and corrective tasks.
For example, in merely a few hours, an active endoscopic technique such as a colonoscopy permits the exploration of the entire colon and rectum, the recording of selected images, the localization of abnormalities such as intestinal polyps, the removal of any polyp, and the extraction of any polyp for additional examination. If the colonoscopy had not been performed and any existing polyp had been left attached to the intestinal wall, such polyp might have become a malignant tumor thus giving rise to a perhaps lethal colorectal cancer. Such a colonoscopy is performed without the administration of general anesthesia. Furthermore, it is performed by a team that involves only a few health practitioners who do not necessarily have to be trained in the techniques that are required in surgical or other more invasive procedures.
The preceding characterization of active endoscopic procedures and the accompanying illustrative example aid in explaining why active endoscopic procedures enjoy great acceptance. This is because active endoscopic procedures lead to considerable savings in time and resources, they are minimally invasive, they can be repeatedly applied with minimal risk of undesirable side effects, and the corrective action may provide preventive effects that would otherwise be hard or even impossible to accomplish.
The foregoing description and characterization of active endoscopic procedures is intended to encompass the characteristics and advantages of peripheral techniques that do not necessarily require the use of an endoscope. Endoscopic applications are generally used in intracavity procedures such as intrathoracic and intraabdominal procedures. Peripheral techniques are usually employed in other body regions, such as arms and legs.
In short, it is a desirable goal to be able to provide by active endoscopic or peripheral procedures a variety of medical services that are currently provided by techniques that are more invasive and more demanding in time and in medical resources and skills. This goal is justified by the efficiency, effectiveness, safety, low cost, and preventive accomplishments of active endoscopic or peripheral procedures. In particular, this invention provides new methods and systems for performing vascular anastomoses by intraluminally directed active endoscopic or peripheral procedures. The intraluminally directed or intravascular part of the procedures of this invention is based on an examination performed by, for example, fluoroscopy, and extraluminal manipulation is performed endoscopically or according to a peripheral technique.
One aspect of this invention encompasses the quasi-simultaneity of the exploration, diagnosis and corrective tasks that can be achieved in vascular anastomoses performed by the intraluminally directed active endoscopic or peripheral procedures of this invention. Another aspect of this invention includes the minimally invasive character of the vascular anastomoses that are performed by the active endoscopic or peripheral procedures of this invention. These procedures are also characterized by comparatively reduced requirements of medical facilities and skill. To more effectively describe and enable the present invention, a review of some basic terminology and related technology is offered in the immediately following subsections.
2.1. Terminology
An anastomosis is an operative union of two hollow or tubular structures. Anastomotic structures can be part of a variety of systems, such as the vascular system, the digestive system or the genitourinary system. For example, blood is shunted from an artery to a vein in an arteriovenous anastomosis, and from the right pulmonary artery to the superior vena cava in a cavopulmonary anastomosis. In other examples, afferent and efferent loops of jejunum are joined in a Braun's anastomosis after gastroenteroscopy; the ureter and the Fallopian tube are joined in a ureterotubal anastomosis, and the ureter and a segment of the sigmoid colon are joined in a ureterosigmoid anastomosis. In microvascular anastomosis, very small blood vessels are anastomosed usually under surgical microscope.
An anastomosis is termed end-to-end when the terminal portions of tubular structures are anastomosed, and it is termed end-to-side when the terminal portion of a tubular structure is anastomosed to a lateral portion of another tubular or hollow structure. In an end-to-side anastomosis, we often refer to the structure whose end is anastomosed as the “graft vessel” while the structure whose side wall is anastomosed is referred to as the “receiving structure”.
Anastomotic material typically includes autologous material, but it can also include heterologous material or synthetic material. An autologous graft is a graft in which the donor and recipient areas are in the same individual. Heterologous material is derived from an animal of a different species. The graft can be made of a synthetic material such as expanded polytetrafluoroethylene (“ePTFE”). Wolf Dieter Brittinger, Gottfried Walker, Wolf-Dieter Twittenhoff, and Norbert Konrad,
Vascular Access for Hemodialysis in Children, Pediatric Nephrology
, Vol. 11 (1997) pp. 87-95. When both ends of the graft are attached to a receiving structure, the configuration of the receiving structure with the anastomosed graft is called a bypass.
Depending on the anastomotic cross-section, anastomoses are termed bevelled or circular. In a bevelled anastomosis, the structures are joined in an oblique fashion, whereas in a circular anastomosis the structures are joined in a plane that is vertical with respect to the ultimate flow through the structures.
A nonocclusive anastomosis is typically an end-to-side anastomosis in which the flow of matter through the vessel that is anastomosed in its side is not interrupted while the anastomosis is performed. Most conventional techniques for vascular anastomosis require the interruption of blood flow through the receiving vessel while the anastomosis is performed.
Although the parts of a blood vessel are designated by well-known terms in the art, a few of these parts are briefly characterized here for introducing basic terminology. A blood vessel is in essence a tubular structure. In general, the region comprised within tubular walls, such as those defining a blood vessel or the walls defining the tubular member of an endoscope, is termed the lumen or the intraluminal space. A lumen that is not occluded is a patent lumen and the higher the patency of a blood vessel, the less disrupted the blood flow through such vessel is. A reduction of a blood vessel's patency can be caused by a stenosis, which is generally a stricture or narrowing of the blood vessel's lumen. A hyperplasia, or tissue growth, can also reduce a blood vessel's patency. Reduction of blood vessel patency, and in general a disruption in a vessel's blood flow, can lead to ischemia, which is a local lack of oxygen in tissue due to a mechanical obstruction of the blood supply.
A sten

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for intraluminally directed vascular... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for intraluminally directed vascular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for intraluminally directed vascular... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3103002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.