Automated system and method for processing meteorological data

Communications: directive radio wave systems and devices (e.g. – Radar for meteorological use

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S176000, C342S460000, C345S629000, C705S003000

Reexamination Certificate

active

06670908

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of Invention
The present invention relates generally to the field of weather event identification, and weather event forecasting and tracking, and more particularly, to a system and method for processing meteorological related data to automatically characterize significant weather events.
While the present invention is subject to a wide range of weather forecasting, reporting, and alerting applications, it is particularly well suited to automatically identify and track the present and anticipated path of travel of significant weather events.
2. Technical Background
In today's weather reporting and forecasting fields, an ever increasing importance is being placed on the timeliness and accuracy of the information being broadcast or otherwise reported. A large percentage of the population of the United States relies upon weather forecast reports broadcast or otherwise distributed by both local and national television stations, radio stations, Emergency Management Agencies (EMAs), and other dissemination sources to accurately relay current weather conditions, and to make predictions relating to future weather conditions for a given geographic area. This information is generally used by individuals to make decisions such as what to wear, whether they should participate in certain activities or not, when they should embark on a trip, and more importantly, when they should seek shelter. When severe weather threatens a particular geographic area, a majority of the population made aware of the severe weather for that particular geographic area has an immediate desire to find out as much information as possible about the severe weather conditions. Weather events such as tornadoes, severe thunderstorms, hail, lightning, heavy rain, and high winds present a significant risk of damage to property, injury to persons, and in some cases death. For these reasons, it benefits individuals to determine if they are likely to be affected by such severe weather. If they are, they can seek shelter, or otherwise take cover to protect themselves from these events. It is therefore critical that the disseminated weather information be both timely and accurate.
During the last two decades, significant strides have been made in this regard. The National Weather Service (NWS) now maintains a network of weather radar installations known as Nexrad located at approximately one-hundred and thirty-eight sites throughout the United States. Observers within a 150 mile radius of these installations monitor the weather conditions for their respective geographic areas of radar coverage, and provide periodic reports such as teletyped messages and more recently, information known generally in the art as the Combined Attribute Table produced at each radar, to anyone accessing the data stream. Generally speaking, this information is distributed to subscribers through third party weather service providers or directly from the federal government. Other weather service providers, such as Global Atmospherics in Arizona, provide information such as lightning strike data on a subscription basis. In addition, many local television stations now own or lease their own Doppler weather radar systems. This technology gives these stations the ability to broadcast substantially real-time weather information for the benefit of the portion of the public in the viewing areas of these stations.
The weather information provided by any one or combination of mechanisms discussed above may be synthesized at a local television station or a third party provider into a understandable format for graphical display, or other form of dissemination to the public. Typically, the meteorological data is collected from one or more sources at the local television station and combined with geographic image maps of a particular geographic region to generate a graphic display of the weather conditions for that particular geographic region. The composite weather images can be stored over time, sequenced, and looped with the aid of a computer system so that the television stations and other broadcast mediums can deliver weather animation that simulates the movement of the weather system across the geographic region over some period of time. Technology has also advanced such that television stations and Internet providers can now operate computer systems that actually predict storm movement and other weather system movement, and forecast that movement for some time into the future. Such systems are generally known in the art as storm tracking systems.
During the 1990's, local television station weathercasters became a more critical element in the dissemination and response process for severe weather situations. In certain instances, media weathercasters have assisted the national weather service in detecting severe weather conditions. This was made possible, in part, by advances in communication technologies, computer processing, display technologies, and radar technology allowing for the development of substantially real-time commercial weather products for use by television stations. These advancements have also made it possible to combine information obtained from multiple radars into single-situational display products. The result has been enhanced situational awareness for the broadcasters and their viewing public, which in turn, has led to fewer instances of loss of life and property as a result of severe weather.
Early storm tracking systems such as the FASTRAC® system marketed by Baron Services, Inc., Huntsville, Ala., are able to manually identify a storm and provide the broadcast meteorologist with the capability of manually creating a storm track while on the air. That system was later upgraded to provide for quasi-automated storm tracking. By using historical data saved in the computer system's memory, a meteorologist may use both the most recently received weather data and historical weather data to create a storm track. Another advancement is the use of Nexrad attribute data to project the movement of a storm with a single user-operation. Using Nexrad attributes provided by the NWS Combined Attribute Table (CAT), a weathercaster can collect Nexrad attribute information corresponding to a storm, derive a storm position from the Nexrad attribute information, and calculate a projected storm path using the derived storm position and the Nexrad attribute information.
Such storm tracking systems, however, are not without their limitations. First, none of the above-mentioned storm tracking systems are truly automated as defined in accordance with the present invention. Secondly, systems that rely upon the NWS manual subjective analysis of radar data rely upon NWS forecasters for their subjective analysis of radar data to provide information pertaining to severe storm location and projected storm movement direction and speed of travel. Thus, when the weather forecaster is wrong, as is often the case, the storm tracking systems may be performing a storm track on the wrong portion of the weather event. In addition, present systems require television broadcasters to manipulate the systems while on the air. As can be appreciated, such systems are labor intensive and do not provide the user with a simple intuitive method for predicting and projecting the location and projected speed and direction of travel of the storms. For timely alerting to the public, especially when numerous storms are present.
What is needed therefore is a system and method of processing meteorological data to automatically characterize significant weather events that is simple to use and requires no human intervention. More specifically, there is a need for a computer based system and method for processing radar return data to create a composite threat image wherein the computer automatically compares the composite threat image to a predetermined threshold value or values to identify one or more areas of threat. The system and method should automatically prioritize the threats based upon type, intensity, size, and/or other criteria withou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated system and method for processing meteorological data does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated system and method for processing meteorological data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated system and method for processing meteorological data will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3101862

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.