Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2000-12-22
2003-09-30
Robinson, Daniel (Department: 3742)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
Reexamination Certificate
active
06628977
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and to a system for visualizing the position and orientation of an object that is penetrating or has penetrated a subject.
2. Description of the Prior Art
In many technical applications, the problem occurs of making an object visible that has penetrated into a subject and is thus no longer visible, or is only partly visible, with respect to its position and orientation in the subject, e.g., for a person handling the object. In medical technology there is, for example, a problem of this sort in the removal of tissue from inside the body of a living being, using a biopsy needle that is to be guided by a physician to the point of the tissue to be examined in a manner that is as precise and closely monitored as possible. As a rule, guidance of the biopsy needle is accomplished using an imaging system, for example an x-ray computed tomography apparatus, a C-arm x-ray apparatus, or an ultrasound apparatus, with which images can be obtained from inside the body of the living subject, these images indicating the position and orientation of the biopsy needle relative to the tissue to be examined.
Advantages of the use of an x-ray computed tomography apparatus as an imaging system in the biopsy procedure are that in the visualization of the biopsy needle ensues in real time, and that good presentation of soft tissue parts occurs in images obtained using an x-ray computed tomography apparatus. In this way, the current position of the biopsy needle relative to the tissue to be examined can be visualized and measured. In addition, in the obtained images not only deformations of the biopsy needle during penetration into the body of the living being, but also pathological and anatomical characteristics of the imaged tissue, can for the most part be recognized clearly. A disadvantage in the use of an x-ray computed tomography apparatus is the relatively small diameter of the gantry opening, which does not present an optimal operating field for the execution of a biopsy procedure. Since in addition the hands of the physician carrying out the biopsy procedure are located within the x-ray projection fan of the x-ray computed tomography apparatus during the biopsy procedure, the physician is exposed to a significant radiation load.
The use of an x-ray apparatus, in particular a C-arm x-ray apparatus, as an imaging system for a biopsy procedure has the advantage that the radiation load for the physician guiding the biopsy needle is significantly less than in a biopsy procedure employing an x-ray computed tomography apparatus. In addition, more space is available for the biopsy procedure. Moreover, obtaining x-ray images using a C-arm x-ray apparatus is generally more economical than is the case with an x-ray computed tomography apparatus. A disadvantage of the x-ray images obtained using a C-arm x-ray apparatus is the two-dimensional representation—which is often insufficient—of the tissue to be examined, and the fact that tumors in x-ray images of this sort are often insufficiently recognizable or not recognizable at all.
Advantages of the use of ultrasound for imaging in the biopsy procedure are that the exposure method free of radiation load, and that the images are obtained in real time. However, a disadvantage is that the tissue to be examined cannot always be represented in ultrasound images. Problems in such imaging always result when media that cannot be penetrated by ultrasound, or can be penetrated by ultrasound only with difficulty, for example air or bone, are located between the ultrasound sending and receiving surfaces of the ultrasound apparatus and the tissue to be examined.
In order to compensate for the disadvantages of the individual imaging systems, it is known to obtain x-ray images in multiple exposures during the execution of a biopsy procedure, using a C-arm x-ray system and an x-ray computed tomography apparatus. However, the patient must be moved from one bed to another numerous times for the exposures using the C-arm x-ray apparatus and for the exposures using the x-ray computed tomography apparatus, which makes the execution of the biopsy procedure expensive and complicated. A further technological development involves the use of what are known as “sliding gantries,” which refers to a coupling of an x-ray computed tomography apparatus with a C-arm x-ray apparatus. A patient bed supporting a patient can thereby be moved back and forth between the x-ray computed tomography apparatus and the C-arm x-ray apparatus for different diagnostic exposures without repositioning the patient.
In spite of this improvement, the execution of a biopsy procedure proves to be laborious due to the required movement back and forth of the patient between two imaging systems during a biopsy procedure.
German OS 198 07 884 discloses a method and an apparatus for obtaining intraoperative exposures of a subject under examination which are compared with exposures that are produced pre-operatively and/or intraoperatively.
In German OS 196 20 371, a method and an arrangement are disclosed in which, for example before a biopsy, a series of two-dimensional x-ray exposures are produced of a subject under examination, in particular to produce contrast-rich x-ray exposures of vascular structures using an imaging apparatus. Using a second imaging apparatus, a volume data set of the subject under examination is produced, from which a series of two-dimensional projections are generated, which visualize, in particular, contrast-rich structures of the subject under examination. Subsequently, the projections and the two-dimensional x-ray images are superposed to form a series of superposition images.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method and a system of the type described above wherein the visualization of an object that has penetrated into a subject is simplified.
According to the invention, this object is achieved in a method for visualizing the position and orientation of an object that is penetrating or has penetrated into a subject, wherein a first set of image data is produced from the interior of the subject, using a first apparatus for recording image data, before the object has penetrated into the subject, a second set of image data is produced from the interior of the subject, using a second apparatus, realized differently from the first apparatus, for recording image data while the object penetrates into the subject, or after the object has penetrated into the subject, a connection (linking relationship) between the image data of the first set and the image data of the second set is produced, image data of the first set are superimposed with image data of the second set in order to form a fused set of image data, and an image obtained from the fused set of image data is displayed.
The first apparatus for recording image data is preferably an apparatus with which image data for the production of high-quality images, correct in detail, from the interior of the subject can be obtained in a non-invasive manner. The second apparatus for recording image data is preferably fashioned such that images of the object that is penetrating or that has penetrated into the interior of the subject can be obtained non-invasively in an economical, simple and rapid manner. Using the first apparatus, image data are thereby obtained before the introduction of the object into the subject, and are stored. Using the second apparatus, image data are recorded, preferably in real time, during the introduction of the object into the subject, or after the object has been introduced into the subject. Finally, by producing a connection between the image data obtained using the first apparatus and the image data obtained using the second apparatus, in a registration method, and by superimposing the image data with one another, fused sets of image data are obtained from which images can be produced in real time, in which details from the interior of the subject are visible, and the object that
Graumann Rainer
Rahn Norbert
Wach Siegfried
Robinson Daniel
Schiff & Hardin & Waite
Siemens Aktiengesellschaft
LandOfFree
Method and system for visualizing an object does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for visualizing an object, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for visualizing an object will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3100528