Method of producing a coating using a kinetic spray process...

Coating processes – Solid particles or fibers applied – Uniting particles to form continuous coating with...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S190000, C427S191000, C427S195000

Reexamination Certificate

active

06623796

ABSTRACT:

TECHNICAL FIELD
The present invention is directed to a method for producing a coating using a kinetic spray system with much larger particles than previously used. The invention further includes a kinetic spray nozzle for use with the larger particles. The invention permits one to increase the particle size used in the system up to at least 250 microns, thereby increasing the range of useful particles and decreasing the processing difficulties associated with the smaller particles typically used.
BACKGROUND OF THE INVENTION
A new technique for producing coatings on a wide variety of substrate surfaces by kinetic spray, or cold gas dynamic spray, was recently reported in an article by T. H. Van Steenkiste et al., entitled “Kinetic Spray Coatings,” published in Surface and Coatings Technology, vol. 111, pages 62-71, Jan. 10, 1999. The article discusses producing continuous layer coatings having low porosity, high adhesion, low oxide content and low thermal stress. The article describes coatings being produced by entraining metal powders in an accelerated air stream, through a converging-diverging de Laval type nozzle and projecting them against a target substrate. The particles are accelerated in the high velocity air stream by the drag effect. The air used can be any of a variety of gases including air or helium. It was found that the particles that formed the coating did not melt or thermally soften prior to impingement onto the substrate. It is theorized that the particles adhere to the substrate when their kinetic energy is converted to a sufficient level of thermal and mechanical deformation. Thus, it is believed that the particle velocity must be high enough to exceed the yield stress of the particle to permit it to adhere when it strikes the substrate. It was found that the deposition efficiency of a given particle mixture was increased as the inlet air temperature was increased. Increasing the inlet air temperature decreases its density and increases its velocity. The velocity varies approximately as the square root of the inlet air temperature. The actual mechanism of bonding of the particles to the substrate surface is not fully known at this time. It is believed that the particles must exceed a critical velocity prior to their being able to bond to the substrate. The critical velocity is dependent on the material of the particle. It is believed that the initial particles to adhere to a substrate have broken the oxide shell on the substrate material permitting subsequent metal to metal bond formation between plastically deformed particles and the substrate. Once an initial layer of particles has been formed on a substrate subsequent particles bind not only to the voids between previous particles bound to the substrate but also engage in particle to particle bonds. The bonding process is not due to melting of the particles in the air stream because the temperature of the air stream is always below the melting temperature of the particles and the temperature of the particles is always below that of the air stream.
This work improved upon earlier work by Alkimov et al. as disclosed in U.S. Pat. No. 5,302,414, issued Apr. 12, 1994. Alkimov et al. disclosed producing dense continuous layer coatings with powder particles having a particle size of from 1 to 50 microns using a supersonic spray.
The Van Steenkiste article reported on work conducted by the National Center for Manufacturing Sciences (NCMS) to improve on the earlier Alkimov process and apparatus. Van Steenkiste et al. demonstrated that Alkimov's apparatus and process could be modified to produce kinetic spray coatings using particle sizes of greater than 50 microns and up to about 106 microns.
This modified process and apparatus for producing such larger particle size kinetic spray continuous layer coatings are disclosed in U.S. Pat. Nos. 6,139,913, and 6,283,386. The process and apparatus provide for heating a high pressure air flow up to about 650° C. and combining this with a flow of particles. The heated air and particles are directed through a de Laval-type nozzle to produce a particle exit velocity of between about 300 m/s (meters per second) to about 1000 m/s. The thus accelerated particles are directed toward and impact upon a target substrate with sufficient kinetic energy to impinge the particles to the surface of the substrate. The temperatures and pressures used are sufficiently lower than that necessary to cause particle melting or thermal softening of the selected particle. Therefore, no phase transition occurs in the particles prior to impingement. It has been found that each type of particle material has a threshold critical velocity that must be exceeded before the material begins to adhere to the substrate. The disclosed method did not disclose the use of particles in excess of 106 microns.
One difficulty associated with all of these prior art kinetic spray systems arises from the small size of the particles that are used. The largest particles are 106 microns, and more typically the particles range from 10 to 50 microns. Because of their large surface to volume ratio these particles tend to have a higher level of oxide formation which is detrimental to the process. It is also difficult to handle these small particles in the feed systems, because they tend to clog the systems. Thus it would be very beneficial to develop a process that could use larger particles to reduce these problems.
SUMMARY OF THE INVENTION
In a first embodiment the present invention is a method of kinetic spray coating a substrate comprising the steps of: providing particles having an average nominal diameter equal to or less than 250 microns; entraining the particles into a flow of a gas, the gas at a temperature below a melt temperature of the particles; and directing the particles entrained in the flow of gas through a supersonic nozzle having a length from a throat to an exit end of from 200 to 400 millimeters thereby accelerating the particles to a velocity sufficient to result in adherence of the particles on a substrate positioned opposite the nozzle.
In a second embodiment the present invention is a method of kinetic spray coating a substrate comprising the steps of: providing particles having an average nominal diameter equal to or less than 250 microns; passing the particles through a powder injector tube having an inner diameter equal to or less than 0.90 millimeters and into a flow of a gas; entraining the particles into the flow of the gas, the gas at a temperature below a melt temperature of the particles; and directing the particles entrained in the flow of gas through a supersonic nozzle having a length from a throat to an exit end of from 200 to 400 millimeters thereby accelerating the particles to a velocity sufficient to result in adherence of the particles on a substrate positioned opposite the nozzle.


REFERENCES:
patent: 3100724 (1963-08-01), Rocheville
patent: 3993411 (1976-11-01), Babcock et al.
patent: 4263335 (1981-04-01), Wagner et al.
patent: 4416421 (1983-11-01), Browning
patent: 4606495 (1986-08-01), Stewart, Jr. et al.
patent: 4891275 (1990-01-01), Knoll
patent: 4939022 (1990-07-01), Palanisamy
patent: 5187021 (1993-02-01), Vydra et al.
patent: 5271965 (1993-12-01), Browning
patent: 5302414 (1994-04-01), Alkhimov et al.
patent: 5308463 (1994-05-01), Hoffmann et al.
patent: 5340015 (1994-08-01), Hira et al.
patent: 5395679 (1995-03-01), Myers et al.
patent: 5424101 (1995-06-01), Atkins et al.
patent: 5464146 (1995-11-01), Zalvzec et al.
patent: 5476725 (1995-12-01), Papich et al.
patent: 5527627 (1996-06-01), Lautzenhiser et al.
patent: 5593740 (1997-01-01), Strumbon et al.
patent: 5648123 (1997-07-01), Kuhn et al.
patent: 5965193 (1999-10-01), Ning et al.
patent: 5975996 (1999-11-01), Settles
patent: 6033622 (2000-03-01), Maruyama
patent: 6074737 (2000-06-01), Jordan et al.
patent: 6129948 (2000-10-01), Plummet et al.
patent: 6139913 (2000-10-01), Van Steenkiste et al.
patent: 6283386 (2001-09-01), Van Steenkiste et al.
Van Steenkiste, et al;Kinetic Spray Coatings; in Surface & Coatings

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of producing a coating using a kinetic spray process... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of producing a coating using a kinetic spray process..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of producing a coating using a kinetic spray process... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3099937

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.