Microelectromechanical device having single crystalline...

Electrical generator or motor structure – Non-dynamoelectric – Thermal or pyromagnetic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S307000, C361S164000

Reexamination Certificate

active

06628039

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to microelectromechanical devices and associated fabrication methods and, more particularly, to microelectromechanical devices having both single crystalline components and metallic components as well as the associated fabrication methods.
BACKGROUND OF THE INVENTION
Microelectromechanical structures (MEMS) and other microengineered devices are presently being developed for a wide variety of applications in view of the size, cost and reliability advantages provided by these devices. Many different varieties of MEMS devices have been created, including microgears, micromotors, and other micromachined devices that are capable of motion or applying force. These MEMS devices can be employed in a variety of applications including hydraulic applications in which MEMS pumps or valves are utilized, optical applications which include MEMS light valves and shutters, and electrical applications which include MEMS relays.
MEMS devices have relied upon various techniques to provide the force necessary to cause the desired motion within these microstructures. For example, electrostatic actuators have been used to actuate MEMS devices. See, for example, U.S. patent application Ser. No. 09/320,891, assigned to MCNC, also the assignee of the present invention, which describes MEMS devices having electrostatic microactuators, the contents of which are incorporated herein by reference. In addition, controlled thermal expansion of an actuator or other MEMS component is another example of a technique for providing the necessary force to cause the desired motion within MEMS structures. See, for example, U.S. Pat. No. 5,909,078 and U.S. patent application Ser. Nos. 08/936,598; and 08/965,277, assigned to MCNC, also the assignee of the present invention, which describe MEMS devices having thermally actuated microactuators, the contents of which are incorporated herein by reference.
An example of a thermally actuated microactuator for a MEMS device comprises one or more arched beams extending between a pair of spaced apart supports. Thermal actuation of the microactuator causes further arching of the arched beams which results in useable mechanical force and displacement. The arched beams are generally formed from nickel using a high aspect ratio lithography technique which produces arched beams with aspect ratios up to 5:1. Although formed with high aspect ratio lithography, the actual nickel arched beams have rather modest aspect ratios and may therefore have less out-of-plane stiffness and be less robust than desired in some instances. Further, the lithography technique used to form nickel arched beams may result in the arched beams being spaced fairly far apart, thereby increasing the power required to heat the arched beams by limiting the amount that adjacent arched beams heat one another. In addition, the resulting microactuator may have a larger footprint than desired as a result of the spacing of the arched beams. Thus, there exists a need for arched beams having higher aspect ratios in order to increase the out-of-plane stiffness and the robustness of microactuators for MEMS devices. In addition, there is a desire for microactuators having more closely spaced arched beams to enable more efficient heating and a reduced size.
Nickel microactuators are typically heated indirectly, such as via a polysilicon heater disposed adjacent and underneath the actuator, since direct heating of the nickel structure (such as by passing a current therethrough) is inefficient due to the low resistivity of nickel. However, indirect heating of the microactuator of a MEMS device results in inefficiencies since not all heat is transferred to the microactuator due to the necessary spacing between the microactuator and the heater which causes some of the heat generated by the heater to be lost to the surroundings.
Nickel does have a relatively large coefficient of thermal expansion that facilitates expansion of the arched beams. However, significant energy must still be supplied to generate the heat necessary to cause the desired arching of the nickel arched beams due to the density thereof. As such, although MEMS devices having microactuators with nickel arched beams provide a significant advance over prior actuation techniques, it would still be desirable to develop MEMS devices having microactuators that could be thermally actuated in a more efficient manner in order to limit the requisite input power requirements.
SUMMARY OF THE INVENTION
The above and other needs are met by the present invention which, in a preferred embodiment, provides a microelectromechanical device comprising a microelectronic substrate, a microactuator disposed thereon and comprised of a single crystalline material, such as silicon, and at least one metallic structure disposed on the substrate in a spaced relationship from the microactuator and preferably in the same plane as the microactuator such that the microactuator can contact the metallic structure upon thermal actuation thereof. In particular, actuation of the microactuator causes said at least one metallic structure to be engaged and moved as a result of the operable contact with the microactuator. In one advantageous embodiment, the MEMS device may include two adjacent metal structures with one of the metallic structures being fixed and the other metallic structure being moveable. In this embodiment, the MEMS device may be a microrelay such that actuation of the microactuator brings the microactuator into operable contact with the moveable metallic structure, thereby permitting the metallic structures to be selectively brought into contact in response to actuation of the microactuator.
According to one advantageous embodiment, the microactuator is thermally actuated. In this embodiment, the microactuator preferably comprises a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. The microactuator may also include an actuator member that is operably coupled to the at least one arched beam and extends outwardly therefrom. The microactuator further includes means for heating said at least one arched beam to cause further arching thereof, wherein the actuator member moves between a first position in which the actuator member is spaced apart from said at least one metallic structure and a second position in which the actuator member operably engages said at least one metallic structure.
In another embodiment of the present invention, the microactuator is electrostatically actuated. In this embodiment, an electrostatic microactuator may comprise, for instance, a microelectronic substrate having at least one stator disposed thereon. Preferably, the stator has a plurality of fingers protruding laterally therefrom. Further, the electrostatic microactuator includes at least one shuttle disposed adjacent the stator, wherein the shuttle is movable with respect to the substrate and has a plurality of fingers protruding laterally therefrom. The fingers protruding from the shuttle are preferably interdigitated with the fingers protruding from the stator. An actuator member is coupled to the shuttle, protrudes outwardly therefrom, and extends between a pair of spaced apart supports. Electrical biasing of the stator with respect to the shuttle causes movement of the shuttle such that the actuator member operably engages the metallic structure in response to the actuation of the electrostatic actuator.
Another advantageous aspect of the present invention comprises the associated method to form a microelectromechanical device having both single crystal components and metallic components. According to one preferred method, a microactuator, such as a thermally actuated microactuator or an electrostatic microactuator, is formed from a wafer comprised of a single crystalline material. At least one metallic structure is also formed upon a surface of a substrate such that at least one metallic structure is moveable relative to the substrate. The microactuator is then bonded upon the surface of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microelectromechanical device having single crystalline... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microelectromechanical device having single crystalline..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microelectromechanical device having single crystalline... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3096250

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.