Ultraviolet-curable resin composition

Radiation imagery chemistry: process – composition – or product th – Producing cathode-ray tube or element thereof – Using specific control or specific modification of exposure,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S402000, C522S182000

Reexamination Certificate

active

06602643

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an ultraviolet-curable resin composition, and more particularly to an ultraviolet-curable resin composition which can be suitably used for the formation of a back coat layer in the two-step etching process to be used for the production of shadow masks for high fine color picture tubes. Further, the present invention relates to a method for the production of a shadow mask which uses such a composition in the formation of a back coat layer and to a shadow mask obtained therefrom.
2. Description of the Prior Art
A shadow mask having the function to collide a predetermined coloring object with electrons irradiated from an electron gun in a cathode-ray tube for a color television is a metal plate which includes a great number of minute holes prepared by etching. The formation of the minute holes is performed by preparing plenty of minute concave portions of a hemisphere or square shape having different diameters in the corresponding positions on both the front and back sides of a metal plate respectively and making the bottoms of the corresponding concave portions open for free passage.
The outline of the manufacturing process of a shadow mask is explained hereinbelow. First, a photosensitive resin coating is applied on both the front and back sides of a thin metal plate made of iron, for example. Then, a negative film having a predetermined exposure pattern is superposed on the metal plate, and the photosensitive resin coating film is subjected to exposure to light to cure the exposed areas of the photosensitive resin coating film, to a development treatment to remove the unexposed areas of the photosensitive resin coating film, and to baking thereof. Subsequently, the photosensitive resin coating film is subjected to the primary etching with a corrosive liquid such as ferric chloride to form minute concave portions on one side or on both the front and back sides so as not to be opened. Then, an ultraviolet-curable resin composition as a back-coating material is applied only on one side of the metal plate to form a film which buries the minute concave portions in one side of the metal plate and then cured by subjecting to heating and/or to irradiation of ultraviolet light, etc. After the one side of the metal plate is protected as mentioned above, the concave portions in the other side are again subjected to the secondary etching with a corrosive liquid so as to be opened for free passage in the bottom with the concave portions formed in the one side by the primary etching. Subsequently, each of the cured coating films of the photosensitive resin for pattern formation and the ultraviolet-curable resin composition as the back-coating material are removed by an alkali treatment to obtain a shadow mask.
As a composition which satisfies the performance required of the ultraviolet-curable resin composition as a back-coating material of a shadow mask, the composition obtained by dissolving in water or in an organic solvent an ultraviolet-curable resin capable of forming a film soluble in an alkaline solution is used now. This composition is applied to a substrate which has undergone the primary etching by a rolling method, a spray method and others, then transferred into a hot air drying furnace etc. to evaporate a solvent, and thereafter cured by ultraviolet-light irradiation to form a resin coating film.
The ultraviolet-curable resin composition as a back-coating material obtained by dissolving in a solvent the resin capable of forming a film, however, requires evaporation of a large amount of solvent by heating for the resin film formation. Thus, it needs a heating apparatus and a recovery system of a solvent. Moreover, there is a risk involved in terms of the toxicity accompanying the handling of the organic solvent and the possibility of a flash ignition explosion. In order to decrease any danger such as ignition, explosion, and a fire in a drying step, the use of chlorine-based solvents, which have fire retardant properties, is also under consideration. In recent years, however, these solvents have been regulated in view of problems such as air pollution. Furthermore, a coating film causes volume shrinkage with evaporation of the organic solvent. Consequently, there is a problem in that the coating film of the shoulder part (edge part) of a minute concave portion tends to become thin.
As a method for solving such problems, the method using the ultraviolet-curable resin which is essentially free of solvent may be considered. When the heretofore known alkali-soluble ultraviolet-curable resin of which cured coating film has acid resistance is used in an ultraviolet-curable resin composition as a back-coating material of a shadow mask, however, it is difficult to fill up minute concave portions uniformly with the composition, without producing air bubbles. Moreover, there is the possibility of causing such problems as poor curing properties in a concave bottom portion and the coating residues due to shortage of the alkali solubility and strippability, and poor adhesiveness to a shadow mask material. Accordingly, the composition which satisfies all the required characteristics is not yet known in the art.
Heretofore, it has been thought that such problems as described above originate in the high viscosity of the ultraviolet-curable resin composition to be used. For example, JP 1-261410,A proposes to set the viscosity of a resin composition at 25° C. to 100 cPs or less. However, when the conventionally used ultraviolet-curable resin composition is applied to a material having a finely undulating surface by means of a roll, for example, since the resin composition has low viscosity and tends to flow, the resin composition flows out of a minute concave portion when part of the roll surface part enters into a minute concave portion and pressure is added to the coating therein, which results in shortage of filling up of minute concave portions with the composition. As a result, there is a problem that the coating film of the shoulder part (edge part) of the minute concave portion tends to become thin. Another problem is the occurrence of cissings on the surface of the metal material, i.e. a phenomenon where spot-like portions which are not covered by the coating film due to the surface tension occur. This phenomenon is also referred to as craters. Generally, when the viscosity of the composition is too low, since the cured coating film becomes uneven, it brings such problems as affording poor etching resistance or inferior alkali strippability.
In order to solve such problems, the present inventors have proposed a composition which exhibits surface tension in the range of 30 to 50 mN/m in JP 10-306124,A. The problem in the application of a composition has been solved by this alteration. However, it cannot necessarily be said that the problems of the resistance against an etching process (corrosion resistance) and the peeling of the coating film in the course of conveyance are fully solved. The problem that sufficient resistance has not been acquired is still left behind.
SUMMARY OF THE INVENTION
Accordingly, the fundamental object of the present invention is to provide an ultraviolet-curable resin composition which can be applied uniformly on the finely undulating surface of a material so as to fully fill up even inside of minute concave portions with the composition without producing air bubbles and which can be easily cured by the ultraviolet-light irradiation for a short time, without causing the problems as described above.
A further object of the present invention is to provide a non-solvent type ultraviolet-curable resin composition which is excellent in the coating workability and permits formation of a cured coating film which is excellent in adhesiveness to a metal such as a shadow mask, exhibits high etching resistance, does not exfoliate at the time of conveyance, exhibits solubility and strippability in an alkali treatment after etching, and thus can be advantageously used as a protective material f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultraviolet-curable resin composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultraviolet-curable resin composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultraviolet-curable resin composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3091931

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.