Stable isocyanate formulations

Organic compounds -- part of the class 532-570 series – Organic compounds – Isocyanate esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Other Related Categories

C560S335000, C524S491000, C525S123000

Type

Reexamination Certificate

Status

active

Patent number

06583314

Description

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to stable isocyanate formulations, to a process for the production of such stable isocyanate formulations and to a process for the production of polyurethanes from such stable isocyanate formulations. A key feature of the present invention is the use of a secondary amine-containing chain extender.
Processes for the production of polyurethanes are known. In these processes, two reactive components are generally combined shortly before the polyurethane is to be formed. One of these components is generally a polyisocyanate and the other is composed of at least one isocyanate-reactive material such as a polyol. Either of these components may include additives such as catalysts, chain extenders, cross-linking agents, surfactants, blowing agents, etc. Frequently, these additives are included in the polyol component. However, in cases where the additive may be highly reactive with one or more materials included in the isocyanate-reactive component, that additive is often included in the isocyanate component. Chain extenders containing amine groups are examples of materials that may be included in the isocyanate component.
Amine chain extenders are commonly used in polyurethane-forming reaction mixtures. See, for example, U.S. Pat. Nos. 5,608,000 and 5,637,639. One of the advantages of amine chain extenders is their high reactivity. However, processing problems are encountered with amine chain extenders having a reactivity which is so high that the isocyanate does not have sufficient time to react with other components present. This undesirable pre-reaction adversely affects the polyurethane product.
It would therefore be advantageous to develop a means for controlling the degree of reactivity of an amine chain extender to such an extent that a significant degree of ore-reaction at the expense of other materials present in the chain extender-containing component does not occur before that component is combined with other reactive materials.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for controlling the extent to which an amine chain extender present in an isocyanate formulation reacts with isocyanate groups present in that formulation prior to initiation of the desired reaction.
It is another object of the present invention to provide a stable isocyanate formulation containing an amine chain extender.
It is a further object of the present invention to provide a process for making a stable isocyanate formulation containing an amine chain extender.
These and other objects which will be apparent to those skilled in the art are accomplished by including an amine chain extender having no primary amine groups present therein, having at least two secondary amine groups, and having a low reactivity towards isocyanate groups in an isocyanate formulation. As used herein, “low reactivity” means that the secondary amine group will not react with an isocyanate group sufficiently to cause the viscosity of the isocyanate to increase to more than 2,000 mPa·s (at 25° C.) in less than 5 seconds. In the present application, it is to be understood that “isocyanate formulation” means at least one isocyanate and may optionally include other additives.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to stable polyisocyanate formulations containing an amine chain extender that contains no primary amine groups, has at least two secondary amine groups and a low reactivity with isocyanate groups. These polyisocyanate formulations are particularly useful for the production of polyurethanes.
The polyisocyanates which may be used to produce the stable formulations of the present invention include any of the known diisocyanates, polyisocyanates, prepolymers having at least two terminal isocyanate groups and modified diisocyanates and polyisocyanates. Examples of suitable isocyanates include: any of the isomers of toluene diisocyanate and mixtures thereof (“TDI”); diphenylmethane diisocyanate (“MDI”); polyphenylene polymethylene polyisocyanate (“PMDI”); hexamethylene diisocyanate (“HDI”); isophorone diisocyanate (“IPDI”); and dicyclohexylmethane 4,4′-diisocyanate. Particularly preferred isocyanates are HDI, IPDI, TDI, MDI and dicyclohexylmethane 4,4′-diisocyanate.
Prepolymers having at least two terminal isocyanate groups useful in the practice of the present invention may be prepared by any of the techniques known to those in the art. Suitable prepolymers will generally have an NCO content of from about 15 to about 42%, preferably from about 20 to about 35%. Such prepolymers are typically prepared by reacting an isocyanate with an isocyanate-reactive material in an amount such that a less than stoichiometric amount of isocyanate reactive material is used. Preferred prepolymers for use in the present invention include polyether polyol prepolymers and polyester polyol prepolymers.
Modified diisocyanates and polyisocyanates suitable for use in the practice of the present invention include: allophanate-modified isocyanates, particularly those prepared from monohydroxyl, dihydroxyl and trihydroxyl compounds; biuret-modified isocyanates; and trimers. Methods for producing such modified diisocyanates and polyisocyanates are known to those in the art.
Processes for producing the secondary amine chain extenders suitable for use in the present invention are known. In one suitable method, an alcohol in which the hydrogen of the hydroxyl group has been replaced with a good leaving group (e.g., a mesylate or chloride group) is reacted with a primary amine to form the secondary amine. Suitable alcohols include any compound containing at least 2 hydroxyl groups. The alcohol may have a hydrocarbon or an ether backbone. Preferred alcohols include: 1,4-cyclohexane dimethanol, 2,2-dimethyl-1,3-propanediol, triethylene glycol and tripropylene glycol.
Primary amines that may be used to produce the chain extenders used in the present invention include: tert-octylamine, 2-ethylhexylamine, cyclohexylamine, 2-amino-2-methylpropane, 1-octylamine, 1-butylamine, 1-propylamine, aniline and toluidine. Preferred primary amines include: tert-octylamine, 2-ethylhexyl amine, and cyclohexylamine.
The amine chain extenders used in the present invention are characterized by: (1) the absence of primary amine groups; (2) the presence of at least two secondary amine groups; and (3) a low reactivity with isocyanate groups. The amine chain extenders can not be so reactive with the isocyanate being used that the viscosity of the isocyanate with which it is combined will increase in viscosity to greater than 2,000 mPa·s (at 25° C.) in less than 5 seconds. It is preferred that the chain extender have a reactivity such that the isocyanate viscosity does not exceed 2,000 mPa·s (at 25° C.) for at least 10 seconds, most preferably at least 15 seconds.
Examples of amine chain extenders that are useful in the practice of the present invention include those represented by the formula
R
1
NR
2
—X—NR
3
R
4
  (I)
in which
R
1
represents an alkyl group having from 1 to 18 carbon atoms, preferably from 1 to 12 carbon atoms, most preferably from 4 to 8 carbon atoms, a cycloalkyl group having from 3 to 18 carbon atoms, preferably from 3 to 12 carbon atoms, most preferably 6 carbon atoms, or an aryl group having from 4 to 18 carbon atoms, preferably from 4 to 12 carbon atoms, most preferably from 6 to 10 carbon atoms,
R
2
represents hydrogen,
R
3
represents an alkyl group having from 1 to 18 carbon atoms, preferably from 1 to 12 carbon atoms, most preferably from 4 to 8 carbon atoms, a cycloalkyl group having from 3 to 18 carbon atoms, preferably from 3 to 12 carbon atoms, most preferably 6 carbon atoms, or an aryl group having from 4 to 18 carbon atoms, preferably from 4 to 12 carbon atoms, most preferably from 6 to 12 carbon atoms,
R
4
represents hydrogen,
X represents an alkyl group having from 1 to 16 carbon atoms, preferably from 1 to 12 carbon atoms, most preferably from 1 to 8 carbon atoms, an aryl group having from

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stable isocyanate formulations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stable isocyanate formulations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stable isocyanate formulations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.