Embolic devices capable of in-situ reinforcement

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06602269

ABSTRACT:

FIELD OF THE INVENTION
Compositions and methods for repair of aneurysms are described. In particular, embolic devices that allow the operator to deliver and transform in situ embolic material.
BACKGROUND
An aneurysm is a dilation of a blood vessel (similar to a balloon) that poses a risk to health from the potential for rupture, clotting, or dissecting. Rupture of an aneurysm in the brain causes stroke, and rupture of an aneurysm in the abdomen causes shock. Cerebral aneurysms are usually detected in patients as the result of a seizure or hemorrhage and can result in significant morbidity or mortality.
There are a variety of materials and devices which have been used for treatment of aneurysms, including platinum and stainless steel microcoils, polyvinyl alcohol sponges (Ivalone), and other mechanical devices. For example, vaso-occlusion devices are surgical implements or implants that are placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel making up that portion of the vasculature through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel. One widely used vaso-occlusive device is a helical wire coil having windings which may be dimensioned to engage the walls of the vessels. (See, e.g., U.S. Pat. No. 4,994,069 to Ritchart et al.) Other less stiff helically coiled devices have been described, as well as those involving woven braids.
U.S. Pat. No. 5,354,295 and its parent, U.S. Pat. No. 5,122,136, both to Guglielmi et al., describe an electrolytically detachable embolic device. Modified GDC coils have also been used in aneurysms, for example surface-modified GDCs as described in Murayama et al. (1999)
American J Neuradiol
20(10):1992-1999. Vaso-occlusive coils having little or no inherent secondary shape have also been described. For instance, coowned U.S. Pat. No. 5,690,666 and 5,826,587 by Berenstein et al., describes coils having little or no shape after introduction into the vascular space.
A variety of mechanically detachable devices are also known. For instance, U.S. Pat. No. 5,234,437, to Sepetka, shows a method of unscrewing a helically wound coil from a pusher having interlocking surfaces. U.S. Pat. No. 5,250,071, to Palermo, shows an embolic coil assembly using interlocking clasps mounted both on the pusher and on the embolic coil. U.S. Pat. No. 5,261,916, to Engelson, shows a detachable pusher-vasoocclusive coil assembly having an interlocking ball and keyway-type coupling. U.S. Pat. No. 5,304,195, to Twyford et al., shows a pusher-vaso-occlusive coil assembly having an affixed, proximally extending wire carrying a ball on its proximal end and a pusher having a similar end. The two ends are interlocked and disengage when expelled from the distal tip of the catheter. U.S. Pat. No. 5,312,415, to Palermo, also shows a method for discharging numerous coils from a single pusher by use of a guidewire which has a section capable of interconnecting with the interior of the helically wound coil. U.S. Pat. No. 5,350,397, to Palermo et al., shows a pusher having a throat at its distal end and a pusher through its axis. The pusher sheath will hold onto the end of an embolic coil and will then be released upon pushing the axially placed pusher wire against the member found on the proximal end of the vaso-occlusive coil.
In addition, several patents describe deployable vaso-occlusive devices that have added materials designed to increase their thrombogenicity. For example,. fibered vasoocclusive devices have been described at a variety of patents assigned to Target Therapeutics, Inc., of Fremont, Calif. Such vaso-occlusive coils having attached fibers is shown in U.S. Pat. Nos. 5,226,911 and 5,304,194, both to Chee et al. Another vasoocclusive coil having attached fibrous materials is found in U.S. Pat. No. 5,382,259, to Phelps et al. The Phelps et al. patent describes a vaso-occlusive coil which is covered with a polymeric fibrous braid on its exterior surface. U.S. Pat. No. 5,658,308 to Snyder is directed to a coil having a bioactive core. The coils may be coated with agarose, collagen or sugar. U.S. Pat. No. 5,669,931 to Kupiecki discloses coils that may be filed or coated with thrombotic or medicinal material. U.S. Pat. No. 5,749,894 to Engleson discloses polymer coated vaso-occlusion devices. U.S. Pat. No. 5,690,671 to McGurk discloses an embolic element which may include a coating, such as collagen, on the filament surface.
U.S. Pat. No. 5,536,274 to Neuss shows a spiral implant which may assume a variety of secondary shapes. Some complex shapes can be formed by interconnecting two or more of the spiral-shaped implants. To promote blood coagulation, the implants may be coated with metal particles, silicone, PTFE, rubber latices, or polymers. U.S. Patent No. 5,980,550 describes a vaso-occlusive device having a bioactive inner coating and a water-soluble outer coating. Co-owned WO/027445, titled “Bioactive Coating for Vaso-occlusive Devices,” describes vaso-occlusive devices coated with a collagen-based material and, additionally, describes the use of a tie-layer between the device and the collagen-based coating.
Liquid embolics, such as cyanoacrylate glues and fibrin sealants, have also been used in animal and human subjects. See, e.g., Interventional Radiology, Dandlinger et al, ed., Thieme, N.Y., 1990:295-313; Suga et al. (1992)
No Shinkei Geka
20(8):865-873; Moringlane et al. (1987)
Surg Neurol
28(5):361-366; Moringlane et al. (1988)
Acta Neurochir Suppl.
(Wein) 43:193-197. Of these liquid embolics, cyanoacrylate glues are the only liquid embolics currently available to neurosurgeons. However, chronic inflammation is typically seen with cyanoacrylate. treatments (Herrera et al. (1999)
Neurol Med Chir
(Tokyo) 39(2):134-139) and the degradation product, formaldehyde, is highly toxic to the neighboring tissues. See, Vinters et al (1995)
Neuroradiology
27:279-291. Another disadvantage of cyanoacrylate materials is that the polymer will adhere both to the blood vessel and to the tip of the catheter. Thus physicians must retract the catheter immediately after injection of the cyanoacrylate embolic material or risk adhesion of the cyanoacrylate and the catheter to the vessel.
Another class of liquid embolic materials--precipitative materials--was invented in late 80's. See, Sugawara et al (1993)
Neuro Med Chir
(Tokyo) 33:71-76; Taki et al (1990) AJNR 11:163-168; Mandai et al (1992)
J Neurosurgery
77:497-500. Unlike cyanoacrylate glues which are monomeric and rapidly polymerize upon contact with blood, precipitative materials are pre-polymerized chains that precipitate into an aggregate upon contact with blood. One potential problem in using the precipitating polymers is the use of organic solvents to dissolve the polymers, i.e., ethanol for PVAc and DMSO for EVAL and CA. These materials are strong organic solvents that can dissolve the catheter hub, and, in the case of DMSO, can damage microcapillary vessels and surrounding tissues. These solvents are also known to cause vasospasm of blood vessels. Additionally, these precipitating agents are often difficult to deliver and typically require the use of multi-lumen catheters (see, e.g., U.S. Pat. No. 6,146,373).
U.S. Pat. No. 6,015,424 describes a vascular embolization device comprising an elongate filamentous element that is control lably transformable from a soft, compliant state to a rigid or semi-rigid state after deployment, for example by contact with blood.
None of the currently available devices approximates the design and functional characteristics of the device described below.
SUMMARY OF THE INVENTION
Thus, this invention includes novel occlusive compositions as well as methods of using and making these compositions.
In one aspect, the invention includes a vaso-occlusive assembly, comprising (a) an implantable device having an axial lumen and (b) a liquid agent, wherein the liquid agent is infused into the lumen of the implantable device, and further wherein the liquid agent (i)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Embolic devices capable of in-situ reinforcement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Embolic devices capable of in-situ reinforcement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Embolic devices capable of in-situ reinforcement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3088173

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.