Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor
Reexamination Certificate
2002-02-21
2003-07-08
Nelms, David (Department: 2818)
Semiconductor device manufacturing: process
Packaging or treatment of packaged semiconductor
C257S684000, C257S701000, C257S702000, C257S723000, C257S778000, C252S514000
Reexamination Certificate
active
06589812
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a “chip-over-board” semiconductor assembly, a type of “chip-on-board” (COB) semiconductor assembly. More specifically, the present invention relates to a method and apparatus for attaching a semiconductor device to a substrate for the subsequent wire bonding of the bond pads on the active surface of the semiconductor device to circuits of the substrate.
2. State of the Art
Definitions:
The following terms and acronyms will be used throughout the application and are defined as follows:
BGA—Ball Grid Array:
An array of minute solder balls disposed on an attachment surface of a semiconductor die wherein the solder balls are refluxed for simultaneous attachment and electrical communication of the semiconductor die to a printed circuit board. A BGA may also be disposed on the printed circuit board. Conductive polymer balls or bumps may also be employed.
COB—Chip-On-Board:
The techniques used to attach semiconductor die to a printed circuit board or other suitable substrate. In this instance, COB also refers to a semiconductor die attached to a printed circuit board or substrate having an aperture therein for wire bonds to extend therethrough from the bond pads on the semiconductor die to circuits of the printed circuit board or substrate.
Flip-Chip:
A semiconductor chip or semiconductor die having a pattern or array of terminations spaced around the active surface of the chip or die for face-down mounting of the chip or die to a substrate.
Flip-Chip Attachment:
A method of attaching a semiconductor die to a substrate in which the die is inverted so that the connecting conductor pads on the face of the device are set on mirror-image pads on the substrate and bonded by solder reflux or a conductive polymer curing.
Wire Bonding:
Conductive wires attached between the bond pads on the active surface of a semiconductor die and the circuits of a circuit board or lead frame to form an electrical connection therebetween.
TAB—Tape-Automated-Bonding.
Conductive traces are formed on a dielectric film such as a polyimide (the structure also being termed a “flex circuit”). The film is precisely placed to electrically connect a die and a circuit board or lead frame through the traces. Multiple connections are simultaneously effected.
Glob Top:
A glob of encapsulant material (usually epoxy or silicone or a combination thereof) surrounding a semiconductor die in a COB assembly.
PGA—Pin Grid Array:
An array of small pins extending substantially perpendicular from the major plane of a semiconductor die, wherein the pins conform to a specific arrangement on a printed circuit board or other substrate for attachment thereto.
SLICC—Slightly Larger than Integrated Circuit Carrier:
An array of minute solder balls disposed on an attachment surface of a semiconductor die similar to a BGA, but having a smaller solder ball pitch and diameter than a BGA.
State-of-the-Art COB Technology Generally Consists of Three Techniques for Attaching Semiconductor Die to a Substrate:
flip-chip attachment, wire bonding, and TAB.
Flip-chip attachment consists of attaching a semiconductor die, generally having a BGA, a SLICC or a PGA, to a printed circuit board. With the BGA or the SLICC, the solder ball arrangement on the semiconductor die must be aligned with the connecting bond pads on the printed circuit board such that precise connection is made. After proper alignment, the semiconductor die is bonded to the printed circuit board by reflowing the solder balls. With the PGA, the pin arrangement of the semiconductor die must be a mirror-image of the pin recesses on the printed circuit board. After insertion, the semiconductor die is generally bonded by soldering the pins into place. An underfill encapsulant is then generally disposed between the semiconductor die and the printed circuit board for environmental protection and to enhance the attachment of the die to the board.
Wire bonding, unlike flip-chip attachment, generally begins with attaching either the active surface or the backside of a semiconductor die to the surface of a printed circuit board with an appropriate adhesive, such as an epoxy. In wire bonding, a plurality of bond wires are attached, one at a time, to each bond pad on the semiconductor die and extend to a corresponding lead or trace end of a circuit on the printed circuit board. The bond wires are generally attached through one of three industry-standard wire bonding techniques: ultrasonic bonding—using a combination of pressure and ultrasonic vibration bursts to form a metallurgical cold weld; thermocompression bonding—using a combination of pressure and elevated temperature to form a weld; and thermosonic bonding—using a combination of pressure, elevated temperature, and ultrasonic vibration bursts. The semiconductor die may be oriented either face up or face down (with its active surface and bond pads either up or down with respect to the circuit board) for wire bonding, although face-up orientation has been more common.
In TAB semiconductor assemblies, ends of metal leads carried on an insulating tape, such as a polyimide, are attached to the bond pads on the semiconductor die and to corresponding lead or trace ends on the printed circuit board. An encapsulant, or plastic resin, is generally used to cover the bond wires and metal tape leads to prevent contamination, aid mechanical attachment of the assembly components, and increase long-term reliability of the electronics with reasonably low-cost materials.
A common manner of forming the encapsulant or plastic package about a semiconductor die assembly is molding and, more specifically, transfer molding. In this process (and with specific reference to COB die assemblies), after the semiconductor die is attached to the substrate (i.e., FR-4 printed circuit board), the semiconductor die assembly is placed in a mold cavity in a transfer molding machine. The semiconductor die assembly is thereafter encapsulated in a thermosetting polymer which, when heated, reacts irreversibly to form a highly cross-linked matrix no longer capable of being re-melted. In addition, another common manner of forming encapsulants for COB assemblages is “glob top” polymeric encapsulation. Glob top encapsulation can be applied by dispensing suitably degassed material from a reservoir through a needle-like nozzle onto the semiconductor die assembly.
The thermosetting polymer of transfer molding generally is comprised of three major components: an epoxy resin, a hardener (including accelerators), and a filler material. Other additives such as flame retardants, mold release agents and colorants are also employed in relatively small amounts. Furthermore, glob top encapsulation can comprise a nonlinear thixotropic material that also includes fillers to achieve the desired degree of thixotropy.
As previously set forth, bonding a semiconductor die to the surface of a substrate for wire bonding chip-on-board and TAB chip-on-board semiconductor assemblies is well known in the art. However, there are problems in the bonding process thereof, and specifically, problems associated with heating the adhesive between the semiconductor die and the substrate. In particular, the substrate is heated to a temperature so that the adhesive flows and then cures to thereby bond the die to the substrate with the cured adhesive therebetween. Some of the problems associated with heating the substrate at the temperature required to flow the adhesive are generally as follows: first, thermal stress exists in the interface between the adhesive and the semiconductor die and the adhesive and the substrate; and second, undesirable outgassing of a solder mask material layering a BGA on the substrate. These problems may result in health and contamination issues, and more importantly, potential detachment of the semiconductor die.
In U.S. Pat. No. 5,972,739, there is illustrated a semiconductor chip attached to a printed circuit board using a sheet of B-stage thermosetting resin having a filler therein, such as particles, fib
Dickey Brenton L.
Jiang Tongbi
Nelms David
Tran Mai-Huong
TraskBritt
LandOfFree
Pre-applied adhesion promoter does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pre-applied adhesion promoter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pre-applied adhesion promoter will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3083499