Method and apparatus for rapid, serial transaction item...

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S493000, C235S492000, C235S487000

Reexamination Certificate

active

06592035

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to transaction item fabrication.
DESCRIPTION OF RELATED ART
High-speed transaction card manufacturing systems that currently exist, process transaction cards at speeds up to 30,000 cards per hour and up. These transaction cards typically include cards that are used in a variety of different transactions, such as credit card purchases, loyalty programs (e.g., frequent flyer accounts, supermarket loyalty accounts, etc.), telephone calling cards, electronic cash cards, and so on. Many of these cards include one or more areas that have an identifier or other information used to identify the card and/or to associate a transaction made using the card with an issuee (e.g., a person that was issued the card). For example, the cards may have an encodable magnetic strip, electronic circuit or other memory device that is encoded with an identifier, such as an alphanumeric sequence, that uniquely identifies the cards. The identifier on each card may be associated with an issuee of the card so that the issuee can be credited with something of value (such as frequent flyer miles) or charged (as in the case of a purchase) for transactions made with the card. The card may also include the identifier or other information in an image formed on the card, such as by inkjet or thermal printing, or other means. The image may be a bar code, a name, an alphanumeric sequence, or other information.
High-speed card processing systems typically process multiple cards moving along a conveyor in parallel to achieve the high card production rates demanded in some applications. That is, such high-speed systems have several different stations along a conveyor line that simultaneously encode, print and/or verify information encoded/printed on multiple cards along the conveyor line. For example, such systems typically encode a first card at a first station while verifying the encoding processing on a second card at a second station, printing a third card at a third station and verifying the printing on a fourth card at a fourth station as the cards move past the stations on a conveyor belt.
SUMMARY OF THE INVENTION
The inventors have appreciated several drawbacks to such processing in some cases, particularly when producing a set of many distinct transaction items in a specific sequence. For example, a customer may require that a set of transaction cards be provided in a numbered sequence from Card No. 1 through Card No. 10,000 in ascending order, i.e., so Card No. 1 is followed by Card No. 2, Card No. 2 is followed by Card No. 3, and so on. The parallel processing system described above may begin processing the set of cards by first encoding a magnetic strip on Card No. 1, and then at the next station verifying the encoding of Card No. 1 as the card moves down the processing line. While encoding is being verified in Card No. 1, Card No. 2 is being encoded. Next, the cards move down the processing line so Card No. 1 is printed with information such as a bar code, encoding of Card No. 2 is verified, and Card No. 3 is encoded. After this processing, the cards again move down the processing line and Card No. 1 has its printing verified, Card No. 2 is printed, Card No. 3 has its encoding verified, and Card No. 4 is encoded. Thus, one card in a sequence may have its printing verified while a second card is being printed, a third card is having the encoding verified and a fourth card is being encoded. In this way, assuming that all cards are properly processed, the cards can be made in order from Card No. 1 to Card No. 10,000 and be provided in the proper order.
However, processing of large batches of cards cannot typically be done without at least one card being improperly processed, e.g., encoding or printing not being properly performed on the card. In the example above, if the printing on the first card (e.g., Card No. 1) is determined to be improper, the first card can be remade, but since the second, third and fourth cards (Cards No. 2 through 4) are already in process and moving along the processing line, the first card must either be remade out of order after the fourth card, or all of the cards in process after Card No. 1 must be discarded to preserve the ordered sequence of cards. That is, Card No. 1 will have to be remade after Card No. 4, e.g., between Card Nos. 15 and 16, or Cards Nos. 1-4 must be discarded and the system made to begin processing again at Card No. 1. Discarding the several cards following an improperly processed card and starting over may make ordering of the cards in the proper sequence easier, for otherwise the remake of the improper card must be specially picked and placed in the card sequence when card processing is complete. However, discarding several otherwise properly processed cards can be wasteful and time consuming.
Although not all aspects of the invention are so limited, in at least one aspect of the invention, transaction items, such as transaction card assemblies, may be processed in a serial fashion so that one or more operations are performed on the items, e.g., an item is encoded, printed and/or verified, before a next item in a sequence begins processing. As a result, if the item is improperly processed at any step in the process, the item can be remade before a next item even begins processing, and transaction items produced in a desired, ordered sequence. In one aspect of the invention, transaction items may be serially processed at a rate of 200 items per hour and up. Item processing rates may vary depending on the operations being performed, e.g., laser marking of a transaction item may need to be performed at a slower rate than ink jet printing, thus slowing the transaction item production rate.
In one illustrative embodiment, a system for processing transaction items is adapted to create a set of transaction items where each transaction item in the set is uniquely identified from other transaction items in the set. The system includes a transport that moves transaction items along a path, and at least one item altering device that performs an operation on a first transaction item. At least one of the operations performed by the item altering device(s), when properly performed, causes the first transaction item to be uniquely identified from other transaction items in a set of transaction items properly processed by the item altering device(s). A verification system detects information indicative of whether the transaction item has been properly processed by the item altering device(s), and a controller automatically controls the item altering device(s) to remake the first transaction item if the first transaction item has been improperly processed before controlling the item altering device(s) to make a next transaction item.
In another aspect, a method for processing a set of processed transaction items includes moving a first transaction item along a path, performing a first operation on the first transaction item that alters the first transaction item, and performing a second operation on the first transaction item that alters the first transaction item. The first and second operations, when properly performed, cause the first transaction item to be uniquely identified from other transaction items in a set of processed transaction items. Information indicative of whether the first and second operations were properly performed on the first transaction item is detected, and the first transaction item is automatically remade if one of the first and second operations were improperly performed on the first transaction item before making a next transaction item so that the set of processed transaction items is created in a specific transaction item sequence.
In another aspect of the invention, transaction items may travel at average speeds of at least 10 feet per minute and up to 1,100 feet per minute during at least some portions of processing. Average transaction item speeds may vary depending on the type of processing being performed.
In another aspect of the invention, transaction items may travel at different speeds

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for rapid, serial transaction item... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for rapid, serial transaction item..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for rapid, serial transaction item... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081799

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.