Aircraft based infrared mapping system for earth based...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S010000, C701S004000, C348S143000

Reexamination Certificate

active

06549828

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to imaging systems. More specifically, the present invention relates to systems for mapping earth based resources using infrared radiometric sensors.
2. Description of the Related Art
Earth resource management is critical for optimal agricultural and other applications. In agricultural applications, earth resource management involves, by way of example, the timed application of controlled amounts of water, fertilizer, pesticides and other elements. In this area, both subjective knowledge and objective data are now amassed in computer-based programs allowing human interaction and providing machine interpretation. These new mechanisms represent a vast improvement over past methods for processing data. The major benefit to agriculture has been the objective integration of knowledge into traditional agricultural practices. Decision support services (DSS) and Expert Systems (ES) have been developed to focus resources in areas of most need where payoff potential is greatest. Included within this range of capabilities are such areas as: nutrient management, insecticide management, crop growth management, soil erosion management, resource management and irrigation management.
There is an ongoing need in the art for optimal management in each of these areas. This requires manual or automatic sensing of one or more indicators. For such applications, thermal sensing techniques are very useful inasmuch as, with respect to crop temperatures, thermal sensing provides an indication of the temperature of the plant which provides an early indication of numerous parameters including proper irrigation level, the presence of parasites and on. Conventional sensing approaches include: 1) soil moisture measurement techniques, 2) plant sampling techniques, 3) atmospheric measurement techniques, and 4) remote sensing techniques.
There are numerous soil moisture measurement techniques including: gravametric sampling, soil tension, soil salinity content, neutron moisture meters, time domain refractometers, and etc. In addition, soil and plant may be sampled manually by feel.
There are numerous experimental and theoretical studies addressing the use of surface temperature and reflectance to gain information about a variety of plant and soil properties. Crop and soil reflectance has been related to green biomass and leaf area index, crop phenology, absorbed photosynthetically active radiation, plant carbon storage and light use efficiency and long term fluxes of nutrients and carbon between various components of the ecosystem. Research using high resolution spectrometers has focused attention on several fertile areas for potential improvements in our ability to detect plant response to stress. One such phenomenon is a shift in the “red edge” of plant reflectance spectra. When plants are stressed, there is a change in concentration of chlorophyll pigments and the red edge moves towards shorter wavelenghts (Gates et al., 1965; Horler et al., 1983). This is most noticeable in an examination of the first derivative of spectral response (Demetriades-Shah and Steven, 1988; Demetriades-Shah et al., 1990). There is some expectation that red shift behavior will be independent of the amount of background soil viewed by the radiometer, thus removing a significant obstacle to the interpretation of remotely sensed imagery (Schutt et al., 1984).
Surface temperature has been related to soil moisture content (Jackson et al., 1977b; Jackson, 1982), plant water stress (Jackson et al., 1977a, Idso et al., 1978; Idso, 1982 and Jackson and Pinter, 1981), and plant transpiration rate (Idso et al., 1977b; Jackson et al., 1983). The Idso-Jackson crop water stress index (CWSI), derived from measurements of foliage temperature (Idso et al., 1981; Jackson et al., 1981), has been shown to be closely correlated with soil moisture content, soil water matrix potential, soil salinity, soil waterlogging, plant water potential, leaf diffusion resistance and photosynthesis, as well as final crop yield (see historical reviews by Jackson, 1987 and Idso et al., 1986). These research results led to the use of CWSI for such important farm applications as irrigation scheduling, predicting crop yields and detecting certain plant diseases (Jackson et al., 1977a; Idso et al., 1977a, Reginato et al., 1978; Jackson et al., 1980, Pinter et al., 1979).
Combining surface reflectance and temperature with meteorological data, methods have been developed to estimate evaporation (ET) rates over large areas (Carison et al., 1981; Gurney and Hall, 1983; Price, 1980, 1982, 1990; Running et al., 1989; Soer, 1980; Taconet et al., 1986; Jackson, 1985; Moran and Jackson, 1991). This technique has been successfully applied to mature agricultural fields using ground-, aircraft- and space-based sensors (Reginato et al., 1985; Jackson et al., 1987; Moran et al.,1990b; Moran et al., 1994a) and, with some refinements, to an arid rangeland site (Kustas et al.,1989; Moran et al., 1994c). A method for incorporating remotely sensed spectral and thermal data into simulation models of crop growth and ET has been described (Maas et al., 1985, 1989). Applied to a region, such models, based on infrequent remotely sensed observations, may provide a continous description of ET over time (Maas et al., 1992; Moran et al., 1992b).
Unfortunately, soil moisture measurement systems are often require wires, tubing and/or special expertise for setup, calibration, operation and maintenance. Plant sampling is often destructive to the crop. Hence, these systems tend to be labor intensive and expensive. More importantly, plant sampling and soil moisture measurement techniques are point source measurement techniques. These systems provide a specific plant or, at best, conditions in the region of a sample. Accordingly, the accuracy of these systems is limited to the extent to which a region is adequately sampled. On the other hand, as the number of samples are increased, the cost increases accordingly.
Atmospheric measurements techniques involve a calculation of water demand based on regional atmospheric conditions. However, this technique is indirect and therefore somewhat inaccurate. The required weather stations are expensive to setup and maintain and the sampling is somewhat localized as is the case with soil moisture measurement and plant sampling techniques discussed above.
At least three thermal remote sensing techniques are known in the art: satellite based systems, aircraft based systems and hand held systems.
The use of satellite data for evaluating temporal changes in surface conditions requires that the data be corrected for atmospheric influences. For visible and near-infrared (IR) wavelengths, this can be accomplished by measuring atmospheric optical depth and using a radiative transfer code to compute the relationship between surface reflectance and radiance at the sensor (Holm et al., 1989; Moran et al., 1990a). However, this procedure is too expensive and time consuming to be used on an operational basis. Other atmospheric correction procedures have been proposed (Otterman and Fraser, 1976; Singh, 1988; Dozier and Frew, 1981; Teillet, 1986), but few have been validated with ground data under different atmospheric conditions and most are dependent upon the use of a radiative transfer model. Ahem et al. (1977) proposed an image-based method for atmospheric correction that eliminated the need for on-site measurements of atmospheric conditions, termed the dark-object subtraction method. Moran et al. (1992a) examined several correction procedures, including four radiative transfer codes (RTC), dark-object subtraction (DOS) and a modified DOS approach, to determine which technique could provide both ease and accuracy. A modified DOS approach, which combined the image-based nature of DOS with the precision of the RTC, provided sufficient accuracy and simplicity to warrant further development.
Image data acquired by satellite and aircraft sensors are usually view angle dependent as a result of a combin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aircraft based infrared mapping system for earth based... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aircraft based infrared mapping system for earth based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aircraft based infrared mapping system for earth based... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081702

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.