Surgery – Respiratory method or device
Reexamination Certificate
1999-10-05
2003-07-01
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
C128S202270, C128S207160
Reexamination Certificate
active
06584970
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to a retaining plug for use in the protection of internal components, such as flaps, of endotracheal catheter tube and manifold assemblies during nonuse, including storage and shipping. The plug of the invention assists in protection of the inner chamber of the assembly from possible contaminants. In addition, the plug of the invention serves to maintain the flap in a closed position during periods of non-use. By use of the plug, the assembly is in excellent working condition once it reaches its destination In a preferred embodiment, the plug contains an exterior element characterized by at least one wedge-like surface. The exterior element of the plug is usefull for separating the endotracheal catheter tube and other adapters and attachment structures from the manifold without an increased risk of contamination or discomfort to the patient. The invention Other relates to a method of using the retaining plug.
BACKGROUND OF THE INVENTION
In the past twenty years, the medical industry has seen an increased interest in closed suction catheter assemblies to create artificial airways, Such assemblies contain endotracheal catheters and manifolds. For instance, such systems were disclosed in U.S. Pat. No. 3,991,762 (“Radford”), which provided for a catheter within a protective sleeve wherein the catheter may be advanced when suctioning is desired. Further, U.S. Pat. No. 4;569,344 (“Palmer”), offered an improved system to reduce the risk of cross-contamination between the patient and the medical personnel using the device. More recently, interest has developed in catheter systems having a flap by which the internal passageway of the catheter can be closed off from the manifold.
There are a variety of different circumstances for which a person may be required to have an artificial airway, such as an endotracheal catheter tube, placed in the patient's respiratory system. In some circumstances, such as surgery, the artificial airway's function is primarily to keep the patient's airway open so that adequate lung ventilation can be maintained during the procedure. Unfortunately, the internal components of these endotrachcal catheter tube and manifold assemblies may become deformed or otherwise damaged prior to use. For instance, the working requirements of the flap may become nonfunctional if shipped disruptively, thereby causing failure of operation of the flap in actual use. Due to the important function that these endotracheal catheter tube and manifold assemblies serve, it is very important that the internal components be preserved in working condition after shipping, storing, and other periods of nonuse.
Moreover, because the endotracheal tube may be left in the patient for a prolonged period of time, it may become necessary to service these endotracheal catheter tube and manifold assemblies in order to replace, repair, refit, or otherwise manipulate the components of or attached to the assembly. Because patients may need the use of an endotracheal tube to sustain mechanical ventilation for the life of the patient to remove respiratory secretions periodically, it is very useful to be able to manipulate the endotracheal catheter tube and manifold assemblies from a more isolated position while reducing the risk of contamination.
In practice, the respiratory suction catheter is advanced through the inner passageway of the catheter and manifold assembly. As the suction catheter is withdrawn, a negative pressure is applied to the interior of the assembly to draw mucus and other secretions from the patient's respiratory system. While a substantial amount of the mucus and other secretions may be withdrawn through the catheter lumen, a portion of the mucus and other secretions may remain on the outside of the catheter. Because patient secretions can contain infectious agents, such as streptococcus, pseudomonas, staphylococcus, and even HIV, it is important to shield clinicians from contact with the catheter. Likewise, it is important to shield patients from communicable pathogens in the environment and those that may be carried by the clinician. This is particularly important because patients on mechanical ventilation often have compromised immune systems. There exists a need to increase the distance between the clinician and the endotracheal catheter assembly to reduce this risk of contamination.
In addition to concerns of cross-contamination, suctioning a patient's artificial airway potentially interferes with proper respiration. Commonly, indwelling endotracheal tubes used over prolonged periods must be mechanically ventilated. Such patients will typically have a fining or manifold attached to the distal end of the endotracheal tube at an endotracheal tube hub. A pair of ventilator tubes extends from a mechanical ventilator and is typically attached to the manifold by an adapter. One tube provides inspiratory air to the patient for inhalation. The other tube allows for exhaled or expiratory air to exit the system. Once the catheter has been used, interest has been created in easy removal of the catheter from the manifold, particularly at the swivel connections. While the prior art has attempted to combine wedge-like surfaces with U-shaped configuration tools, as discussed herein, the prior art required a discrete unit be separately packaged to perform this function. Moreover, these devices do not provide a significant distance between the clinician and the patient. Moreover, damage to internal components such as the flap has continued to be serious concern to the proper functioning of the catheter assemblies. The prior art fails to incorporate features into a single discrete unit that insure secure insertion and static positioning of the flap during shipping.
SUMMARY OF THE INVENTION
The present invention provides a retaining plug to maintain the position of the internal components of endotracheal catheter tube manifold assemblies, including the flap valve of respiratory suction catheter assemblies during nonuse. Additionally, the present invention may be used to separate the manifold and catheter components, including adapters and attachment structures such as endotracheal tubes, during replacement, transition, and cleaning operations. Moreover, by fabricating the present invention to engage the exterior surface of attachments, swivels, and similar adapters to the manifold, preferably in an engaging relationship created by wedge like surfaces formed on snugly fitting U-shaped tines, the present invention provides a method to separate the manifold from these adapters with minimal discomfort to the patient.
The retaining plug of the present invention is configured to be inserted into the inner shaft of the manifold and thus serves to engage and detain the internal components such as the flap, however configured, within the manifold and catheter assembly. This engaging relationship presses the flap in a closed position and prevents deformation in the shape of the flap as well as upward movement of the flap during shipping, storing, and other periods of nonuse. In the preferred embodiment, the plug comprises at least one spring or similar expanding element. In this embodiment, when properly inserted into the catheter assembly, each spring will expand and engage, thereby forming a snug, friction fit with at least one inner cavity of the assembly. This engaging property will insure that the flap is snugly held in a closed position to prevent deformation or premature intrusion of the catheter during shipping, storing, or nonuse. In a preferred embodiment, the spring will expand into at least one cavity of the manifold through its preformed knob on the external wall of the spring. This protruding knob engages into a receptor port of the manifold of this cavity.
REFERENCES:
patent: 378744 (1888-02-01), Underwood
patent: 391870 (1888-10-01), Walter
patent: 474436 (1892-05-01), Barnhart
patent: 535390 (1895-03-01), Murphy
patent: 587350 (1897-08-01), Wear
patent: 675622 (1901-06-01), Clinton
patent: 837812 (1906-12-
Crump Chet M.
Madsen Edward B.
Ballard Medical Products
Dority & Manning P.A.
Lewis Aaron J.
LandOfFree
Retaining plug for endotracheal catheter and manifold... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Retaining plug for endotracheal catheter and manifold..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Retaining plug for endotracheal catheter and manifold... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3079464