Metallic sulphide catalysts, processes for synthesising said...

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Sulfur or compound containing same

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S217000, C502S208000, C502S209000, C502S210000, C502S211000, C502S202000, C502S203000, C502S204000, C502S206000, C502S207000, C502S222000, C502S223000

Reexamination Certificate

active

06562752

ABSTRACT:

The present invention concerns a catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected from the group consisting of group IIIB, including the lanthanides and actinides, group IVB and group VB and optionally (c) at least one element B selected from the group consisting of group VIIB and group VIII and a mixture therof, said sulfur being present in a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups IIIB, IVB, VB, VIIB and VIII and optinally at least one porous amorphous or low crystallinity type matrix.
More particularly, the present invention relates to a catalyst containing a multimetallic sulphide phase comprising sulphur and at least one element A selected from the group consisting of elements from group IIIB, including the lanthanides and actinides (group 3 in the new notation for the periodic table: “Handbook of Chemistry and Physics”, 76
th
edition, 1995-1996, inside front cover), and group IVB (group 4), at least one element B selected from the group consisting of elements from group VIIB (7) and group VIII (groups 8, 9 and 10 in the new notation for the periodic table), said mixed sulphide phase optionally being associated with a porous matrix, generally an amorphous or low crystallinity oxide type matrix, optionally at least one element selected from elements from group VB (5), group VIB (6), optionally at least one element selected from the group formed by P, B and Si, and optionally at least one source of anions from group VIIA (group 17).
The present invention also relates to a supported sulphur-containing catalyst for hydrorefining or hydroconversion, containing at least one sulphide of at least one element selected from group IIIB, including the lanthanides and actinides, group IVB, group VB (groups 3, 4, 5 in the new notation for the periodic table: “Handbook of Chemistry and Physics”, 76
th
edition, 1995-1996, inside front cover), associated with at least one porous matrix, generally an amorphous or low crystallinity oxide type matrix. The catalyst can also optionally contain at least one zeolitic or non zeolitic molecular sieve and optionally at least one element from group VIII (groups 8, 9, 10 in the new notation for the periodic table), optionally at least one element selected from the group formed by P, B, Si, and optionally at least one element from group VIIA (group 17). The catalyst comprises a quantity of sulphur such that the degree of sulphurisation is over 40%.
The present invention also relates to the use of the simple sulphides and the mixed sulphides obtained as catalysts for hydrorefining and hydrocracking, for example for hydrogenation, hydrodenitrogenation, hydrodeoxygenation, hydrodearomatization, hydrodesulphurization and hydrodemetallization of hydrocarbon-containing feeds containing at least one aromatic and/or olefinic and/or naphthenic and/or paraffinic type compound, said feeds possibly containing metals and/or nitrogen and/or oxygen and/or sulphur.
Sulphide compounds, and in particular sulphides of transition metals, can be used as catalysts for carrying out hydrotreatment reactions in petroleum refining and in petrochemistry.
Sulphides of transition metals and rare earths (lanthanides) are also used in lubricants, pigments, battery electrodes, materials for sulphur detectors, materials with specific optical properties, additives for luminescent materials, and anti-corrosion coatings in sulphur-containing atmospheres.
In general, the properties of simple sulphides are often improved by the addition of a second element leading to the formation of an intimate association of two elements in the sulphide phase, hereinafter termed a mixed sulphide. As an example, the addition of nickel to molybdenum sulphide substantially improves the catalytic activity of tungsten sulphide for hydrogenation of aromatic compounds (Ahuja, S. P., Derrien, M. L., Le Page, J. F., Industrial Engineering Chemistry Products Research Development, volume 9, pages 272 to 281, 1970). Adding cobalt to molybdenum sulphide substantially improves the activity of the molybdenum sulphide for hydrodesulphurisation of petroleum cuts.
The simple sulphides and the mixed sulphides can be synthesised by a number of methods which are well known to the skilled person.
Crystallised transition metal or rare earth simple or mixed sulphides can be synthesized by reacting transition metal or rare earth type elements with elemental sulphur at high temperature in a process which is well known to the skilled person in the solid state chemistry field but is expensive, in particular as regards industrial application.
The synthesis of simple sulphides and the one of bulk or supported mixed sulphides by reacting a suitable precursor in the form of a mixed oxide of transition metals and/or rare earths impregnated with a sulphur compound in the liquid phase followed by treatment in hydrogen in a traversed bed reactor is well known to the skilled person.
The synthesis of bulk sulphide catalysts or sulphide catalysts supported on a porous matrix by treatment of a bulk oxide precursor or an oxide precursor supported on a porous matrix in hydrogen with a sulphur-containing hydrocarbon feed, in particular sulphur-containing petroleum cuts such as gasoline, kerosene or gas oil, to which a sulphur compound, for example dimethyldisulphide, can optionally be added, is also well known to the skilled person.
Bulk sulphides can also be synthesised by co-precipitation, in a basic medium, of sulphur-containing complexes in solution containing two cations. This method can be carried out at a controlled pH and is termed homogeneous sulphide precipitation. It has been used to prepare a mixed sulphide of cobalt and molybdenum (G. Hagenbach, P. Courty, B. Delmon, Journal of Catalysis, volume 31, page 264, 1973).
Synthesizing bulk sulphide catalysts or sulphide catalysts supported on a porous matrix by treatment of a bulk oxide precursor or an oxide precursor supported on a porous matrix in a hydrogen/hydrogen sulphide mixture or nitrogen/hydrogen sulphide mixture is also well known to the skilled person.
U.S. Pat. No. 4,491,639 describes the preparation of a sulphur-containing compound by reacting elemental sulphur with V, Mo and W salts and in particular V, Mo and W sulphides optionally containing at least one of elements from the series C, Si, B, Ce, Th, Nb, Zr, Ta and U in combination with Co or Ni.
Other methods have been proposed for the synthesis of simple sulphides. As an example, the synthesis of crystallized simple sulphides of rare earths described in U.S. Pat. No. 3,748,095 and French patent FR-A-2 100 551 proceeds by reacting hydrogen sulphide or carbon disulphide with an amorphous rare earth oxide or oxycarbonate at a temperature of over 1000° C.
European patents EP-A-0 440 516 and U.S. Pat. No. 5,279,801 describe a process for synthesizing simple transition metal or rare earth sulphur-containing compounds by reacting a transition metal or rare earth compound with a carbon-containing sulphur compound in the gaseous state, in a closed vessel at a moderate temperature of 350° C. to 600° C.
However, it is well known that certain elements such as group IIIB elements, including the lanthanides and actinides, group IVB elements, and group VB elements, are very difficult to sulphurise. It is also well known that elements from groups IIIB and IVB, in a bulk or supported oxide form, are very difficult to sulphurise in the form of mixed sulphides. The known sulphurisation methods which are routinely used industrially and in the laboratory, such as sulphurisation in a gaseous hydrogen/hydrogen sulphide mixture or liquid phase sulphurisation using a mixture of a hydrocarbon feed and added dimethyldisulphide, are ineffective when sulphurising such solids.
The considerable amount of research carried out by the Applicant on preparing sulphide catalysts based on sulphides of elements from groups IIIB, including the lanthanides and actinides, and group IVB, and numerous other el

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metallic sulphide catalysts, processes for synthesising said... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metallic sulphide catalysts, processes for synthesising said..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metallic sulphide catalysts, processes for synthesising said... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3076581

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.