Sheath and method for reconfiguring lung viewing scope

Surgery – Endoscope – With inflatable balloon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S114000, C600S120000

Reexamination Certificate

active

06585639

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to medical apparatus, systems, methods, and kits. More particularly, the present invention relates to methods and apparatus for isolating lobar and sub-lobar segments of the lung and delivering or retrieving substances from such isolated regions.
Lung access and isolation are of interest in numerous therapeutic and diagnostic medical procedures. In particular, access to the lungs is useful for both local and systemic drug delivery, lung lavage, visual assessment and diagnosis of lung function, lung volume reduction, and the like.
For drug delivery, access is most simply achieved by introducing an aerosol to the lungs through the mouth or nose, and a variety of inhalers, nebulizers, metered dose inhalers (MDIs), nasal sprayers, and the like, have been developed over the years. While very effective for many drugs, delivery through the mouth or nose can be very inefficient, often with less than 20% of the drugs reaching circulation or a targeted local treatment region. Moreover, inhalation through the mouth or nose is not able to target drug delivery to a particular region of the lungs. While this may not be a problem for systemic delivery, it can be a significant drawback in the treatment of localized disease where a highly controlled delivery profile would be preferred.
Of more particular interest to the present invention, techniques are presently being developed and implemented for intrabronchial volume reduction (“IBVR”) of the lung. Such techniques are described in detail in co-pending application Ser. Nos. 09/347,032; 09/523,061; and 09/606,320. Briefly, IBVR involves introducing a catheter to a lung passageway which feeds a diseased region of the lung. A cuff or other occlusion member on the catheter is then inflated in the lung passageway, and a plug or other obstruction formed in the passageway to occlude the diseased region of the lung. Optionally, the diseased region of the lung may be aspirated and/or drugs or other active substances delivered to that region in order to effect treatment. The IBVR techniques are intended as non-surgical alternatives to lung volume reduction surgery.
Heretofore, it has been proposed to perform both IBVR and lung lavage protocols using an integrated catheter which can be introduced to the lung through the conventional or thin-walled endotracheal tube. In some instances, the procedures are performed without any endotracheal tube with the patient under local anesthesia. The endotracheal tube is positioned in the trachea, and the integrated catheter passed distally through the endotracheal tube and guided to a target site in a lung passageway which feeds the diseased region of the lung. In order to achieve both proper positioning and lung occlusion, the integrated catheter will comprise at least the following components: (1) a viewing scope including both viewing and illumination fibers, (2) a cuff or balloon structure for occlusion of the lung passageway, and (3) a lumen or working channel for delivery of the lung occlusion plug, device, glue, or the like.
Because of the multiple functions required of the integrated catheter, the cost can be significant. In addition to cost, the medical facility where the procedure is to be performed must maintain an inventory of the integrated catheters, which inventory is in addition to all the other lung access, treatment, diagnosis, and other devices which may be routinely maintained by that facility.
One other device which is commonly maintained by medical facilities to perform procedures on the lungs is a “bronchoscope.” The bronchoscope is a type of endoscope which is specially adapted to be introduced through an endotracheal tube or directly into a lung passageway to permit viewing of the interior of the lung. The bronchoscope will typically comprise a flexible elongated body, and optical viewing fiber or a video chip, and a light transmitting bundle. The scope may be connected to a conventional viewing system which permits real time viewing of that portion of the lung which has been accessed by the bronchoscope. Optionally, the bronchoscope may include a working channel or lumen to permit conventional procedures, such as biopsy, lavage, retrieval of foreign matter, stent placement, laser therapy, or the like. While the bronchoscopes will typically be formed from a polymeric tube or shaft, it may also be formed from articulated structures which permit introduction through the tortuous regions of the lung. In either case, the bronchoscope will typically not be provided with an occlusion cuff or balloon to permit temporary occlusion of a lung passageway to isolate a region of the lung.
For these reasons, it would be desirable to provide improved apparatus, systems, methods, and kits for accessing and occluding a patient's lungs, particularly a lobar or targeted sub-lobar region of the patient's lungs. The present invention should particularly provide for a modification of a conventional bronchoscope or other lung viewing scope so that the scope can be used in procedures which require selective lung isolation. The modified viewing scopes should be useful for performing a variety of procedures which require both access and selective occlusion, including IBVR, segmental ventilation diagnostics, lung lavage, lung drug delivery, and the like. At least some of these objectives will be met by the invention described hereinafter.
2. Description of the Background Art
U.S. Pat. No. 5,607,386, illustrates a bronchoscope positioned in the lumen of a malleable “stylet” which, in turn, is positioned in a standard endotracheal tube which is cut to 25 cm or less. An endotracheal tube with integral optical viewing and illumination fibers is illustrated in U.S. Pat. No. 5,285,778. A device for treating blebs in lungs and including an elongate member having a balloon and imaging illumination fibers is illustrated in WO099/01076. Other bronchial catheters and treatment systems are described in U.S. Pat. Nos. 5,954,636; 5,904,648; 5,660,175; 5,645,519; 5,400,771; 4,976,710; 4,961,738; 4,886,496; 4,862,874; 4,846,153; 4,819,664; 4,784,133; 4,716,896; 4,453,545; 4,327,720; 4,086,919; 4,041,936; 3,913,568; 3,866,599; and 3,162,190.
The subject matter of the present application is related to that of the following commonly assigned, co-pending applications: U.S. Ser. Nos. 09/606,320; 09/523,016; 09/425,272; and 09/347,032, the full disclosures of which are incorporated herein by reference.
SUMMARY OF THE INVENTION
The present invention provides improved apparatus, systems, methods, and kits for accessing and occluding lung passageways, particularly passageways leading to lobar and sub-lobar regions of a patient's lungs.
The isolated region will be a portion (usually not the whole) of the right or left lung, and isolation will be accomplished by occluding a bronchial passage at least one location in the lobar, segmental, and subsegmental bronchus. Thus, a primary occlusion will be formed after both the main bifurcation of the trachea and a further bifurcation into the lobar bronchus. Optionally, the lobar and/or sub-lobar region can be further isolated at at least one secondary location distal to the primary point of isolation and usually after further branching of the bronchial passages. Isolation at the primary location and optional additional locations within the bronchial passages will usually be effected by expansion of an occlusion member, such as an inflatable cuff, inflatable balloon, or the like.
Once the lobar or sub-lobar region has been isolated, a variety of therapeutic and diagnostic procedures can be performed within the isolated region. A presently preferred therapeutic procedure which can be performed using the systems and methods of the present invention is referred to as “intrabronchial volume reduction” (IBVR). IBVR is a non-surgical technique for isolating and occluding diseased lobar and sub-lobar regions of a patient's lung. A systems and methods of the present invention will provide for acc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sheath and method for reconfiguring lung viewing scope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sheath and method for reconfiguring lung viewing scope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sheath and method for reconfiguring lung viewing scope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3075579

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.