Method and device for continuous coating of at least one...

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S324000, C427S318000, C427S428010, C118S244000

Reexamination Certificate

active

06592701

ABSTRACT:

FIELD OF THE INVENTION
The subject of the present invention is a process and an apparatus for the continuous coating of at least one metal strip with a thin fluid film of crosslinkable polymer containing neither solvent nor diluent.
DISCUSSION OF THE BACKGROUND
Thermally crosslinkable polymers such as, for example, thermosetting polymers, or physically crosslinkable polymers such as, for example, photocurable polymers, are known.
Various processes are known for applying a thermoplastic or thermosetting organic coating to a bare or coated metal strip.
The application of organic coatings such as, for example, liquid paints or varnishes is usually carried out by roller coating these liquid coatings in the state of a solution or of a dispersion in an aqueous or solvent medium.
To do this, the liquid coating is deposited on a metal strip by predosing the solution or dispersion using a system comprising two or three rollers and by transferring some or all of this liquid coating thus predosed onto an applicator roller in contact with the surface of the metal strip to be coated.
The transfer is performed either by friction of the applicator roller on the metal strip, the two surfaces in contact running in opposite directions, or by contact in the same direction.
An advantageous trend in the technology of continuous application of crosslinkable polymer coatings, such as thermosetting paints or varnishes for example, to a metal strip consists in depositing this coating without the use of a solvent or a diluent.
To apply such coatings, several techniques are known at the present time.
The first consists in applying the organic coating in the form of a powder.
Another technique for applying a liquid coating to a metal strip is known, this technique using a heating tank, usually called a melting kettle, provided in its lower part with an orifice from which the liquid polymer contained in the tank flows.
Placed below this tank are two parallel rolls in contact with each other and the metal strip to be coated moves along beneath these rolls.
The liquid polymer is poured into the nip of the rolls, then flows between the said rolls and is deposited on the metal strip.
However, this technique has drawbacks stemming from the fact that the polymer can be only slightly reactive on account of its relatively long storage time in the heating tank and from the fact that it does not allow the thickness of the coating film on the metal strip to be controlled and consequently does not allow a thin homogeneous coating to be obtained.
Another technique consists in using the extrusion of the organic coating in the fluid state and in applying this coating to a substrate by extrusion coating or by lamination.
It is common practice to apply a thin organic coating, particularly of thermoplastic polymers, by extrusion coating to flexible substrates, such as paper, plastic films, textiles or even thin metal substrates, such as packaging materials.
The molten coating is transferred by means of a rigid sheet die positioned in direct contact with the substrate and the thickness of this coating does not depend on the die aperture but only on the flow rate of molten material through the section of the said die and on the speed of the substrate.
This technique requires there to be perfect parallelism between the edges of the die and the substrate.
In addition, the pressure exerted by the die on the substrate derives only from the viscosity of the molten material so that any possibility of correcting the discrepancies in flatness of the substrate, by pressing the latter against the back-up roll, is very limited.
The technique of extrusion lamination of a uniform layer of fluid coating on a substrate uses the drawing beneath the die of a fluid sheet at the exit of a sheet die, this sheet then being pressed against the substrate with the aid, for example, of a cold roller or of a rotating bar, or else by an air knife or an electrostatic field.
In this case, the thickness of the fluid sheet is controlled by the flow rate of the material in the die section and by the speed of the substrate.
In order to prevent the fluid sheet from sticking on the pressing roller, the latter must have a perfectly smooth and cooled surface.
In addition, the pressing pressure must however be low enough to prevent the formation of a calendering bead and consequently, this mode of transfer does not make it possible to compensate for any thickness variations and discrepancies in flatness in the case of a rigid substrate.
This technique of applying the coating with the formation of a free strand at the exit of the extrusion die makes it possible to avoid the problems of coupling between the die and the rigid substrate, but it causes application instabilities if the length of the free strand fluctuates.
In general, in the various known techniques mentioned above, the continuous application of a thin organic coating to metal substrates is carried out with low contact pressures, insufficient to allow production of a thin uniform coating applied homogeneously to rigid substrates which may have flatness and thickness-heterogeneity discrepancies.
These various application techniques do not make it possible to compensate for the variations in thickness of the metal substrate, which variations consequently cause unacceptable fluctuations in the thickness of the coating, especially if the substrate is formed by a metal strip which exhibits significant surface roughness and/or corrugations of amplitude equal to or greater than the thickness of the coating to be produced on the said metal strip.
Moreover, these various application techniques do not make it possible to allow for variations in the width of the substrate nor variations in the transverse positioning of this substrate, so that the coating cannot be deposited uniformly over the entire width of the said substrate.
Finally, during application of the coating, air microbubbles may be trapped between the coating and the substrate, which is to the detriment of homogeneous application and to the surface appearance of this coating and which, in some applications, causes rapid corrosion of the substrate at these air microbubbles.
Moreover, EP-A-0,593,708 discloses an apparatus for coating a running metal strip in which this metal strip passes over a back-up roll and is in contact with an applicator roll at the surface of which a fluid coating agent is deposited.
The applicator roll is driven in rotation in an opposite direction to the direction in which the strip runs, and this roll is made of metal.
This apparatus has drawbacks.
This is because, given the nature of the material of which the applicator roll is made, this apparatus does not allow homogeneous pressure to be applied at all the points of application of the film to the metal strip between the two rollers when the surface of this metal strip is excess reliefs, that is to say exhibits roughness and/or corrugations which are equivalent to or greater than the thickness of the coating film to be deposited.
This is because the surface hardness of the applicator roller does not allow the pressure to be applied and distributed uniformly and locally to the strip and there is even the risk of the coating film spreading, to the detriment of the homogeneity of its
SUMMARY OF THE INVENTION
Consequently, the continuous application of a thin uniform coating of crosslinkable polymer to a metal strip therefore causes problems because this metal strip has flatness and thickness discrepancies as well as significant roughness and/or corrugations of amplitude equal to or greater than the thickness of the coating film to be deposited on the said strip, even when this strip is pressed with a high force against a uniform roll.
The object of the invention is to avoid these drawbacks by providing a process and an apparatus for the continuous coating of at least one metal strip with a thin fluid film of crosslinkable polymer containing neither solvent nor diluent, making it possible to obtain a coating of uniform thickness of a few microns applied homogeneously to this

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for continuous coating of at least one... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for continuous coating of at least one..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for continuous coating of at least one... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3070222

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.