Method for splicing hose

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S280000, C156S289000, C156S294000, C156S308200

Reexamination Certificate

active

06540859

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for splicing hose using a non-toxic anti-bonding agent.
2. Description of the Prior Art
Agricultural irrigation utilizes irrigation hose known as “drip tape” to irrigate crops by distributing water substantially uniformly at discreet locations spaced along the length of the drip tape. Because drip tapes are relatively flat hoses, they are more easily rolled, transported, and stored than hoses that remain round in cross section. Drip tapes have become increasingly utilized in row-crop farming because water is distributed to the soil immediately adjacent to the growing plants and the entire field need not be irrigated. Sprinklers do the initial watering around the seedlings and then the drip tape is stretched out and placed on the ground to water the crops.
A problem that hinders the further use of drip-tapes for irrigation of major crops is the cost of replacing or repairing the drip tapes. Over time, the repeated installation and retrieval of used drip tapes results in an increasing number of unjoined segments of tape. Typically, there are many unjoined segments on the retrieved drip tape spool, even after only one use, because the drip tape segments are only as long as the particular row from which they are retrieved. Since the row lengths generally vary, the used drip tape segment upon reinstallation will most probably require a coupling because the used segment will likely be too long or too short for the new row length. This problem is compounded with each additional retrieval and reinstallation. Eventually, the high cost of the couplings and installation labor make the further use of the used drip tapes economically not feasible. Also, discarding the drip tapes is environmentally unfriendly.
On most farms, the drip tapes are used once and then discarded, however, discarding the drip tapes is wasteful and disposal costs are significant, but in most situations there has been no feasible alternative. Vegetable growers have developed a way to reclaim and reuse drip tape, and the drip tape can be reused up to fifteen times before it is discarded. This reclaiming process involves pulling the short lengths (approximately 500 feet) of drip tape out of the field, splicing them together, and reeling the spliced drip tape onto plastic reels holding 5,000 feet of drip tape or more. An example of this is U.S. Pat. No. 6,090,233 discussed hereafter.
Conventional repair methods for flexible hoses incorporate the use of injection molded plastic couplings to splice together unjoined pieces of flexible hoses. Examples of such couplings include those sold by Agricultural Products Inc. under the name TAPELOC FITTINGS™. However, in addition to the cost of these couplings, the couplings must be removed each time the hose is retrieved because the coupling is rigid and can damage the hose as the hose coils on the take-up spool. Removing the plastic couplings and reinstalling them each time the hose is reused is both time consuming and expensive thereby limiting the feasibility of reusing the hose. In addition, the coupler has a diameter smaller than the diameter of the hose and can have a flow reducing effect on the hose.
U.S. Pat. No. 4,636,272 by Riggs discloses a process for thermally bonding plastic tubes utilizing a stepped mandrel. This process, however, is not conducive to bonding irrigation hoses because only relatively short segments of tubing may be bonded together since the mandrel is of limited length.
U.S. Pat. No. 6,090,233 by Delmer discloses an irrigation hose splice and a method of making an irrigation hose splice. A flat heat shield is inserted into a first hose segment to prevent its inner circumferential surface from fusing together when the first hose segment is later fused to a second hose segment. The first hose segment is inserted into a second hose segment
107
creating an area where the two segments overlap. Heat and compression are simultaneously applied to the overlapping area to fuse the segments together creating an irrigation hose splice composed of material from the first hose segment and the second hose segment
107
fused together. The flat heat shield prevents the inside surface of the first hose segment from also fusing together and blocking the waterway of the hoses, and the flat heat shield is later removed from the spliced hose.
The present method addresses these problems and provides a relatively simple, economical way to repair irrigation hoses.
SUMMARY OF THE INVENTION
In a preferred embodiment method for splicing hose, a non-toxic anti-bonding agent is applied to an inside surface of a first end of a first hose. The first end of the first hose is inserted into a second end of a second hose thereby creating an overlapping portion where the first hose is inserted into the second hose. Heat and pressure are applied to the overlapping portion thereby bonding the first hose and the second hose together to form a spliced hose, wherein the anti-bonding agent prevents the inside surface of the first end from fixedly fusing together.
In a preferred embodiment method for splicing hose, a non-toxic anti-bonding agent is applied to an inside surface of a first end of a first hose. The first end of the first hose is inserted into a second end of a second hose thereby creating an overlapping portion where the first hose is inserted into the second hose. Heat and pressure are applied to the overlapping portion thereby bonding the first hose and the second hose together to form a spliced hose, wherein the anti-bonding agent prevents the inside surface of the first end from fixedly fusing together. Then, water is allowed to flow through the spliced hose to peel apart the inside surface thereby opening the spliced hose.
In a preferred embodiment method for splicing hose, a non-toxic anti-bonding agent is applied to an inside surface of a first end of a first hose. The first end of the first hose is inserted into a second end of a second hose thereby creating an overlapping portion where the first hose and the second hose overlap. The first hose and the second hose are bonded together, wherein the anti-bonding agent prevents the inside surface of the first end from fixedly fusing together.
In a preferred embodiment method for repairing a hose, a first hose having a first open end, a first inside surface, and a first outside surface is provided. A non-toxic anti-bonding agent is applied to the inside surface of the first hose. A second hose having a second open end and a second inside surface is provided. The first end of the first hose is inserted into the second end of the second hose thereby creating an overlapping portion, wherein the first outside surface contacts the second inside surface. The first hose and the second hose are bonded together proximate the overlapping portion to create a single repaired hose having a hose splice, wherein the first outside surface and the second inside surface are fused together and the anti-bonding agent prevents the inside surface of the first end from fixedly fusing together.
In another preferred embodiment method for splicing irrigation hose, a first hose having a first open end and an inside surface is provided. A non-toxic anti-bonding agent is applied to the inside surface of the first hose. A second hose having a second open end is provided. The first end of the first hose is inserted into the second open end of the second hose thereby creating an overlapping portion where the first hose and the second hose overlap. Then, a structural integrity material is applied about said overlapping portion prior to applying heat and pressure. Heat and pressure are then applied to the overlapping portion thereby bonding the first hose and the second hose together, wherein the anti-bonding agent prevents the inside surface of the first open end from fixedly fusing together.
In another preferred embodiment method for splicing irrigation hose, a first hose having a first open end and an inside surface is provided, and a non-toxic anti-bonding ag

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for splicing hose does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for splicing hose, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for splicing hose will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067268

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.