Metal powder, method for producing the same, and conductive...

Specialized metallurgical processes – compositions for use therei – Compositions – Loose particulate mixture containing metal particles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S343000, C252S513000

Reexamination Certificate

active

06620219

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to metal powder, a method for producing the same and conductive paste. More particularly, the invention relates to conductive paste, for example, which is advantageously used for forming internal conductors of monolithic ceramic electronic components, a metal powder contained therein and a method for producing such metal powder.
2. Description of the Related Art
A conductive paste is used for forming internal conductors of monolithic ceramic electronic components, such as monolithic ceramic capacitors. The conductive paste contains metal powder as a conducting component. As the metal powder, nickel powder is frequently used.
As the size and thickness of such monolithic ceramic electronic components is decreased, the particle size of the metal powder contained in the internal conductor must be decreased.
One method for advantageously producing a metal powder having a small particle size is a vapor phase process. However, the production cost of metal powder is high in the vapor phase process.
On the other hand, a method for producing metal powder having a small particle size by a liquid phase process is disclosed, for example, in Japanese Examined Patent Publication No. 6-99143. The patent publication discloses a method for producing nickel powder in which a powder having a small particle size is obtained by the step of subjecting a nickel salt solution to liquid-phase reduction using a solution of a boron hydroxide such as sodium boron hydroxide as a reducing agent. In accordance with this method, however, since boron precipitates as an alloy or impurity in the nickel powder, the resultant nickel powder is not always suitable-as a conductive component for conductive paste.
A method for producing metal powder by a liquid phase process is also disclosed in Japanese Unexamined Patent Publication No. 5-43921. The patent publication discloses a method for producing nickel powder in which a solution containing basic nickel carbonate is reduced and hydrazine is used as a reducing agent. Since hydrazine is used as a reducing agent, nickel powder will not be contaminated with impurities. However, the resultant nickel powder has a particle size of more than 100 nm and thus being undesirable as a conductive component for a conductive paste for forming internal conductors in which the thickness thereof must be decreased.
SUMMARY OF THE INVENTION
To overcome the above described problems, preferred embodiments of the present invention provide a method for producing a metal powder by a liquid phase process in which metal powder having a particle size of about 100 nm or less can be obtained, and a mixture of impurities originating from a reducing agent does not occur.
Further, preferred embodiments of the present invention provide a metal powder having a particle size of about 100 nm or less which is obtained by the producing method described above and is not contaminated with impurities originating from a reducing agent.
Further, preferred embodiments of the present invention provide a conductive paste which can be advantageously used for forming internal conductors with the aim of decreasing the thickness of monolithic ceramic electronic components.
One preferred embodiment of the present invention provides a method for producing a metal powder comprising the step of providing an alkaline hydroxide, hydrazine or a hydrazine hydrate, and a metallic salt in a solvent containing at least an alcohol, at least a portion of each being dissolved. In this step, a metal powder composed of a metal contained in the metallic salt is precipitated by reduction of the metallic salt with hydrazine or the hydrazine hydrate.
In such a method for producing metal powder, the hydrazine or a hydrazine hydrate (hereinafter both referred to simply as “hydrazine”) does not greatly precipitate impurities in the metal that has been reduced therewith.
When hydrazine or a hydrazine hydrate reduces a metal, hydroxide ions must be supplied, and such hydroxide ions are supplied by the alkaline hydroxide. As the alkalinity increases, the rate of the reduction reaction is increased, resulting in a smaller size of the resultant metal powder. Therefore, by changing alkaline strength, that is, by changing the concentration of the alkaline hydroxide in the reducing agent solution or the type of alkaline hydroxide, the particle size of the precipitated metal powder can be controlled. When a solvent composed of an alcohol only is used, the reduction reaction of hydrazine does not proceed unless an alkaline hydroxide is present.
In a method for producing metal powder in accordance with the present invention, a solvent containing an alcohol is used instead of water as the solvent for dissolving hydrazine or the metallic salt. As the solvent containing an alcohol, an alcohol only may be used or a mixture of an alcohol and water may be used. By using a solvent containing an alcohol as the solvent, instead of water only, the solubility of metallic ions can be decreased, thus enabling an increase in the precipitation rate of the metal and a decrease in the particle size of the precipitated metal powder in comparison with a case of using water only as the solvent. Therefore, by changing the alcohol concentration in the mixture of the alcohol and water as the solvent, the particle size of the precipitated metal powder may also be controlled.
Preferably, in order to make an alkaline hydroxide, hydrazine or a hydrazine hydrate and a metallic salt exist in the solvent as described above, a reducing agent solution which is obtained by dissolving an alkaline hydroxide and hydrazine or a hydrazine hydrate in a solvent containing at least an alcohol is prepared. At ran the same time, a metallic salt solution, which is obtained by dissolving a metallic salt in a solvent containing at least an alcohol is prepared, and the reducing agent solution and the metallic salt solution are mixed.
The concentration of the alcohol in the solvent described above is preferably in the range of from about 10% to 100% by volume. If the concentration is less than about 10% by volume, the particle size of the metal powder will not substantially differ from that of metal powder which has been produced by reduction in water by a conventional method.
The concentration of the alkaline hydroxide contained in the reducing agent solution is preferably in the range of from about four times the concentration of the hydrazine or hydrazine hydrate used up to about 10 moles/liter. If the concentration is less than about four times the concentration of the hydrazine or hydrazine hydrate, the reduction reaction does not finish. On the other hand, if the concentration is more than about 10 moles/liter, the alkaline hydroxide is not dissolved in the solvent.
The concentration of the hydrazine or hydrazine hydrate contained in the reducing agent solution is preferably in the range of from the amount stoichiometrically required for reducing the metallic salt to about 20 moles/liter.
If the concentration is less than the amount stoichiometrically required for reducing the metallic salt, the reduction reaction does not finish. On the other hand, if the concentration is more than about 20 moles/liter, the effect of using an alcohol as the solvent is lessened because hydrazine is a liquid at room temperature.
The concentration of the metallic salt contained in the metallic salt solution is preferably about 10 moles/liter or less. If the concentration exceeds about 10 moles/liter, the metallic salt is not dissolved in the solvent.
The present invention is also directed to metal powder obtained in accordance with the producing methods as described above. Preferably, the metal powder has a particle size of about 100 nm or less.
The present invention is also directed to conductive paste containing such metal powder.
Preferably, the conductive paste is used for forming internal conductors of monolithic ceramic electronic components.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
When metal powder is produced in acc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metal powder, method for producing the same, and conductive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metal powder, method for producing the same, and conductive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal powder, method for producing the same, and conductive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3064804

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.