Brickless stove

Stoves and furnaces – Stoves – Heating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C126S065000, C126S060000, C126S083000

Reexamination Certificate

active

06546926

ABSTRACT:

FIELD OF INVENTION
This invention is directed to a heating stove which is not limited to but preferably to stoves adapted to the burning of wood.
BACKGROUND OF THE INVENTION
Mankind has made use of heating appliances generally categorized as stoves for hundreds of years. For the most part, the primary function of stoves until recently was for cooking and heating. While this is still true today, other factors have driven the design of stoves to produce heat more efficiently while discharging less of the undesirable byproducts of combustion into the atmosphere. Prior art stoves have traditionally had the capability of producing large amounts of heat, whilst simultaneously producing large undesirable amounts of noxious substances which were expelled into the atmosphere by the burning fuel.
In order to provide an acceptable life for most of the prior art woodburning stoves, manufacturers usually provided a metallic shell in which firebricks and/or heavy iron castings were formed and fitted into a firebox in order to protect and shield the inner surface of the outer metallic shell of the stove from the burning fuel. The resultant stove tended to be quite massive, slow to heat and difficult to move. Because of the massiveness of these stoves, considerable heat energy is required just to raise the temperature of the stove to the desirable operating temperature.
Recently stove manufacturers resorted to producing an “airtight” stove which limited the amount of combustion air allowed to the firebox so that a firebox filled with wood could be made to burn at a controlled rate for many hours.
Because of the lack of oxygen supplied to the burning wood, these “airtight” stoves tended to produce copious amounts of creosote and other gaseous products resulting from incomplete combustion of the burning fuel because of oxygen starvation. The low temperature of the emitted flue gas also allowed creosote and other noxious substances to be deposited in the cold chimney flue.
Continued use of these “airtight” stoves usually resulted in a chimney fire from time to time. Because of the problems associated with this type of heating appliance, environmental authorities had little choice but to introduce stringent restrictions on the types of stoves which could be sold in each jurisdiction.
In 1988 the U.S. Environmental Protection Agency introduced a set of standards for New Residential Wood Heaters under Title 40—Code of Federal Regulations Part 60, which has had a great influence on the design of stoves which have been and are to be introduced into the U.S. market. The presence of these Regulations has provided stove manufacturers all over the world with a set of guidelines to measure the efficiency of any wood burning stove and the resulting production of any undesirable emitted materials produced by the stove under test during a monitored burning operation so as to enable a comparison of the test stove results against a (set of) given standard(s).
It is with a view to the production of a stove which is able to easily meet the 40 C.F.R. (60) regulations that this invention is directed.
DISCUSSION OF PRIOR ART
U.S. Pat. No. 4,941,451 Jul. 17, 1990
A stove having a firebox which is surrounded by multiple air chambers is described. Primary air enters the front of the stove just below the door and is ducted to the top of the firebox where it is directed downwardly from a point well above the burning fire to induce combustion of the fuel in the firebox.
Cooling air for the stove also enters the stove in an opening in the bottom of the stove below the firebox floor. A fan is shown propelling air entering the opening into three separate streams.
A first stream is ducted up the back of the stove behind the firebox and across the top of the stove and out to the room via louvres.
A second stream is ducted upwardly in a pair of riser tubes to empty from a manifold above the fire but below the hollow baffle. Air leaves a secondary manifold to ignite and burn unburned gases.
A third stream enters the hollow baffle from a side space. This air cools the baffle and exits through a series of holes above the second secondary stream.
A slider type draft control adjusts the amount of primary air fed to the firebox. The secondary air is pressurized by a fan in the plenum beneath the firebox floor.
U.S. Pat. No. 4,832,000
This patent uses separate primary and secondary airflows to improve the combustion of the fuel in the firebox. Both primary and secondary airflows are preheated.
U.S. Pat. No. 4,665,889
A stove having a baffle and separate primary and secondary airflow paths is illustrated. The primary air is not really heated, but the secondary air is heated during its passage through the secondary duct work.
SUMMARY OF THE INVENTION
This invention is directed to a stove which is extremely lightweight (in comparison to the heavy stoves of recent vintage) and typically uses sheet steel as the basic material for forming an enclosure for a typical stove fire box. The interior of the sheet material forming the firebox is preferably coated with a layer of a preselected material which is resistant to break down due to exposure to high temperature and the products of combustion present in a firebox. The sheet steel which forms the firebox of the stove of this invention is typically coated with a protective layer of a suitable glass material on the inside surface to protect the steel sheet from the effects of exposure to the high temperatures existing in a firebox and the combustion byproducts produced therein. The sheet steel is typically a mild steel with low carbon content which lends itself to the glass coating process which must be carried out in an oven at temperatures approaching 1500° F. The glass coating is selected to be a high temperature glass which contains a small amount of titanium (up to about 8%) which tends to have the effect of making the interior glass surface of the firebox self cleaning. The glass film and the metallic sheet steel base material must have similar coefficients of expansion in order that the glass coating steadfastly adheres to the base material during the many temperature excursions to which the glass coated sheet steel will be subjected over the life of the stove.
The stove is provided with primary and secondary inlet air passages which are designed specifically to control the quantities of primary and secondary invitiated air allowed to enter the combustion chamber of the stove during a normal combustion process. The secondary inlet air is ducted through passages in the stove which are placed so as to be in excellent heat transfer relationship with the burning fuel in the combustion chamber of the stove so as to efficiently heat the air in the duct work to a temperature approaching or matching that existing in the combustion chamber of the stove.
The primary air (unheated) enters the stove above the access door and is ducted downwardly so as to sweep downwardly against the inside surface of the glass on the access door. This tends to prevent any buildup of smoke particles on the glass in the door. Because of the difference in density of the cold inlet air and the hot air near the burning fuel, the inlet air tends to make its way to the bottom of the firebox to promote primary combustion.
The stove of this invention is provided with a forwardly extending baffle which extends from the rear of the combustion chamber and which is fastened into the combustion chamber at each side of the baffle to the interior of the stove at some distance beneath the exhaust vent. This baffle prevents the hot air produced during the burning process from exiting directly from the fire into the exhaust vent and up the flue. Because the hot gasses produced by pyrolysis must linger longer in the hot combustion chamber, the chances for oxidation of these gasses to occur is much greater in the presence of the baffle.
The secondary air enters the stove through a draft control (at the front of the stove) and passes through a heat exchanger duct or preheat heat exchanger to the rear of the stove which allows the secon

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Brickless stove does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Brickless stove, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brickless stove will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3064272

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.