Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element
Reexamination Certificate
2001-03-09
2003-03-25
Oda, Christine K. (Department: 2858)
Electricity: measuring and testing
Fault detecting in electric circuits and of electric components
Of individual circuit component or element
C324S542000
Reexamination Certificate
active
06538452
ABSTRACT:
TECHNICAL FIELD
The present invention is directed to coaxial connector and cable testing, and more specifically to a device for testing continuity, concentricity, and/or pin height of coaxial connectors and cables.
BACKGROUND
Cables with coaxial connectors are prevalently used for electrical signal transfer. Various types of coaxial connectors are available, such as BNC connectors and miniature coaxial connectors. The coaxial connector has a sleeve portion that is typically connected to the signal ground conductor of the cable, and the connector has a center pin that is the termination of the cable's signal conductor. The center pin is positioned concentrically within the sleeve and conducts the signal from the source to the destination.
The coaxial cable's ability to carry the signal from the source to the destination is dependent upon the cable's qualities and those of the coaxial connectors at each end. The cable must have sufficient signal continuity through the electrical signal conductor to its ends and through the signal ground conductor to the sleeves. Thus, short circuits or open circuits within the cable and connector are prohibited. Additionally, continuity between a connector and jack must be established by the coaxial connector's interface to the jack. This interface requires that the coaxial connector have center pin concentricity such that the center pin properly enters a connector jack receptacle that conducts the signal received from the center pin when the sleeve engages a receiving sleeve of the jack. Furthermore, the center pin must extend far enough (i.e., have a sufficient pin height) relative to the sleeve position to engage the receptacle of the connector to establish signal continuity between the connector and the jack.
When installing coaxial cables, it is difficult to verify that the cable and connector meet requirements such as those mentioned above. Care must be exercised in verifying continuity, concentricity, and pin height to avoid further damage to the connector. This is especially true for miniature coaxial connectors where the center pin is more vulnerable.
Thus, there is a need for a device that permits continuity, concentricity, and pin height to be easily tested for a coaxial connector and cable without risking damage to the connector.
SUMMARY
The present invention provides a device that may easily test one or more of the qualities of a coaxial cable and connector without harming the coaxial connector. Embodiments of the present invention provide features that test continuity, pin height, and/or concentricity while providing support for the coaxial connector to prevent damage to the center pin.
The present invention may be viewed as a device for testing a cable having a coaxial connector with a sleeve and a center pin. The device includes a housing having opposing surfaces forming a housing interior with the housing having at least a first and second aperture. A first coaxial connector jack is disposed on one of the surfaces and passes through the first aperture. The first coaxial connector jack has a first center pin receptacle surrounded by a first support shaft that is sized to concentrically receive an inner side of the sleeve of the coaxial connector. The first coaxial connector jack also has a reference electrode.
A second coaxial connector jack is disposed on one of the surfaces and passes through the second aperture. The second coaxial connector jack has a second center pin receptacle surrounded by a second support shaft that is sized to concentrically receive the inner side of the sleeve. First circuitry is disposed within the housing and electrically connected to the first center pin receptacle and the reference electrode. The first circuitry provides electrical power to the coaxial connector received by the first coaxial connector jack to determine whether the electrical resistance of the coaxial connector is within a predetermined range and to provide a first external indication of the determination.
A first switch is in operable connection with the second center pin receptacle, and the switch is repositioned in response to the second center pin receptacle receiving the center pin of the coaxial connector that has a length greater than a threshold. Second circuitry is disposed within the housing and is electrically connected to the first switch, with the second circuitry providing a second external indication in response to the first switch being repositioned.
The present invention may be viewed as another device for testing a cable having a coaxial connector with a sleeve and center pin. The device includes a housing having opposing surfaces forming a housing interior, and the housing has at least a first aperture. A first coaxial connector jack is disposed on one of the surfaces and passes through the first aperture and has a first center pin receptacle surrounded by a first support shaft that is sized to concentrically receive an inner side of the sleeve of the coaxial connector. The first coaxial connector has a reference electrode, and first circuitry is disposed within the housing and electrically connected to the first center pin receptacle and the reference electrode. The first circuitry provides electrical power to the coaxial connector received by the first coaxial connector jack to determine whether the electrical resistance of the coaxial connector is within a predetermined range and to provide an external indication of the determination.
The present invention may be viewed as another device for testing a cable having a coaxial connector with a sleeve and a center pin. The device includes a housing having opposing surfaces forming a housing interior, and the housing has at least a first aperture. A first coaxial connector jack is disposed on one of the surfaces and passes through the first aperture, and the first coaxial connector jack has a first center pin receptacle surrounded by a first support shaft that is sized to concentrically receive an inner side of the sleeve of the coaxial connector. A first switch in operable connection with the first center pin receptacle is repositioned in response to the first center pin receptacle receiving a center pin of the coaxial connector that has a length greater than a threshold. First circuitry is disposed within the housing and electrically connected to the first switch and provides an external indication in response to the first switch being repositioned.
The present invention may be viewed as another device for testing a cable having a coaxial connector with a sleeve and a center pin. The device includes a coaxial connector jack that includes a first support shaft having a first pin entryway of a first diameter at a receiving end of the support shaft with the support shaft being sized to receive an inner side of the sleeve. The connector jack also includes a first center pin receptacle that is surrounded by the first support shaft and has an inner diameter at a receiving end of the receptacle greater than or equal to the first diameter.
The present invention may be viewed as another device for testing a cable having a coaxial connector with a sleeve and a center pin. The device includes a coaxial connector jack having a first support shaft being sized to receive an inner side of the sleeve. The connector jack also includes a first center pin receptacle surrounded by the first support shaft and a concentric outer support surface surrounding the first support shaft. The outer support surface is sized to concentrically engage an outer side of the sleeve, and the outer support surface has longitudinal slots that accept barbs extending radially from the coaxial connector that limit rotation of the coaxial connector while allowing longitudinal movement of the coaxial connector.
REFERENCES:
patent: 2810881 (1957-10-01), Daily
patent: 3378764 (1968-04-01), Peltz
patent: 3613048 (1971-10-01), Brundza
patent: 4553085 (1985-11-01), Canzano
patent: 4929902 (1990-05-01), Nelson, III
patent: 5043536 (1991-08-01), DeBartolo, Jr.
patent: 5187875 (1993-02-01), Kue
Madsen Dale
Witty Amy
ADC Telecommunications Inc.
Merchant & Gould
Oda Christine K.
LandOfFree
Device for testing coaxial connectors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for testing coaxial connectors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for testing coaxial connectors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3061236