Toner compositions comprising polythiophenes

Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Post imaging process – finishing – or perfecting composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S110200

Reexamination Certificate

active

06503678

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is directed to toners suitable for use in electrostatic imaging processes. More specifically, the present invention is directed to toner compositions that can be used in processes such as electrography, electrophotography, ionography, or the like, including processes wherein the toner particles are triboelectrically charged and processes wherein the toner particles are charged by a nonmagnetic inductive charging process. One embodiment of the present invention is directed to a toner comprising particles of a resin and an optional colorant, said toner particles having coated thereon a polythiophene. Another embodiment of the present invention is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a resin and an optional colorant, said toner particles having coated thereon a polythiophene.
The formation and development of images on the surface of photoconductive materials by electrostatic means is well known. The basic electrophotographic imaging process, as taught by C. F. Carlson in U.S. Pat. No. 2,297,691, entails placing a uniform electrostatic charge on a photoconductive insulating layer known as a photoconductor or photoreceptor, exposing the photoreceptor to a light and shadow image to dissipate the charge on the areas of the photoreceptor exposed to the light, and developing the resulting electrostatic latent image by depositing on the image a finely divided electroscopic material known as toner. Toner typically comprises a resin and a colorant. The toner will normally be attracted to those areas of the photoreceptor which retain a charge, thereby forming a toner image corresponding to the electrostatic latent image. This developed image may then be transferred to a substrate such as paper. The transferred image may subsequently be permanently affixed to the sub strate by heat, pressure, a combination of heat and pressure, or othersuitable fixing means such as solvent or overcoating treatment.
Another known process for forming electrostatic images is ionography. In ionographic imaging processes, a latent image is formed on a dielectric image receptor or electroreceptor by ion or electron deposition, as described, for example, in U.S. Pat. No. 3,564,556, U.S. Pat. No. 3,611,419, U.S. Pat. No. 4,240,084, U.S. Pat. No. 4,569,584, U.S. Pat. No. 2,919,171, U.S. Pat. No. 4,524,371, U.S. Pat. No. 4,619,515, U.S. Pat. No. 4,463,363, U.S. Pat. No. 4,254,424, U.S. Pat. No. 4,538,163, U.S. Pat. No. 4,409,604, U.S. Pat. No. 4,408,214, U.S. Pat. No. 4,365,549, U.S. Pat. No. 4,267,556, U.S. Pat. No. 4,160,257, and U.S. Pat. No. 4,155,093, the disclosures of each of which are totally incorporated herein by reference. Genereally, the process entails application of charge in an image pattern with an ionographic or electron beam writing head to a dielectric receiver that retains the charged image. The image is subsequently developed with a developer capable of developing charge images.
Many methods are known for applying the electroscopic particles to the electrostatic latent image to be developed. One development method, disclosed in U.S. Pat. No. 2,618,552, the disclosure of which is totally incorporated herein by reference, is known as cascade development. Another technique for developing electrostatic images is the magnetic brush process, disclosed in U.S. Pat. No. 2,874,063. This method entails the carrying of a developer material containing toner and magnetic carrier particles by a magnet. The magnetic field of the magnet causes alignment of the magnetic carriers in a brushlike configuration, and this “magnetic brush” is brought into contact with the electrostatic image bearing surface of the photoreceptor. The toner particles are drawn from the brush to the electrostatic image by electrostatic attraction to the undischarged areas of the photoreceptor, and development of the image results. Other techniques, such as touchdown development, powder cloud development, and jumping development are known to be suitable for developing electrostatic latent images.
Powder development systems normally fall into two classes: two component, in which the developer material comprises magnetic carrier granules having toner particles adhering triboelectrically thereto, and single component, which typically uses toner only. Toner particles are attracted to the latent image, forming a toner powder image. The operating latitude of a powder xerographic development system is determined to a great degree by the ease with which toner particles are supplied to an electrostatic image. Placing charge on the particles, to enable movement and imagewise development via electric fields, is most often accomplished with triboelectricity.
The electrostatic image in electrophotographic copying/printing systems is typically developed with a nonmagnetic, insulative toner that is charged by the phenomenon of triboelectricity. The triboelectric charging is obtained either by mixing the toner with larger carrier beads in a two component development system or by rubbing the toner between a blade and donor roll in a single component system.
Triboelectricity is often not well understood and is often unpredictable because of a strong materials sensitivity. For example, the materials sensitivity causes difficulties in identifying a triboelectrically compatible set of color toners that can be blended for custom colors. Furthermore, to enable “offset” print quality with powder-based electrophotographic development systems, small toner particles (about 5 micron diameter) are desired. Although the functionality of small, triboelectrically charged toner has been demonstrated, concerns remain regarding the long-term stability and reliability of such systems.
In addition, development systems which use triboelectricity to charge toner, whether they be two component (toner and carrier) or single component (toner only), tend to exhibit nonuniform distribution of charges on the surfaces of the toner particles. This nonuniform charge distribution results in high electrostatic adhesion because of localized high surface charge densities on the particles. Toner adhesion, especially in the development step, can limit performance by hindering toner release. As the toner particle size is reduced to enable higher image quality, the charge Q on a triboelectrically charged particle, and thus the removal force (F=QE) acting on the particle due to the development electric field E, will drop roughly in proportion to the particle surface area. On the other hand, the electrostatic adhesion forces for tribo-charged toner, which are dominated by charged regions on the particle at or near its points of contact with a surface, do not decrease as rapidly with decreasing size. This so-called “charge patch” effect makes smaller, triboelectric charged particles much more difficult to develop and control.
To circumvent limitations associated with development systems based on triboelectrically charged toner, a non-tribo toner charging system can be desirable to enable a more stable development system with greater toner materials latitude. Conventional single component development (SCD) systems based on induction charging employ a magnetic loaded toner to suppress background deposition. If with such SCD systems one attempts to suppress background deposition by using an electric field of polarity opposite to that of the image electric field (as practiced with electrophotographic systems that use a triboelectric toner charging development system), toner of opposite polarity to the image toner will be induction charged and deposited in the background regions. To circumvent this problem, the electric field in the background regions is generally set to near zero. To prevent deposition of uncharged toner in the background regions, a magnetic material is included in the toner so that a magnetic force can be applied by the incorporation of magnets inside t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Toner compositions comprising polythiophenes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Toner compositions comprising polythiophenes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toner compositions comprising polythiophenes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3058103

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.