Power supply for electric arc welding

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S130330

Reexamination Certificate

active

06600134

ABSTRACT:

The present invention relates to the art of electric arc welding and more particularly to a power supply for electric arc welding with an AC arc current.
INCORPORATION BY REFERENCE
The power supply constructed in accordance with the present invention is used to create a positive and negative current pulses having high magnitude generally exceeding 1,000 amperes. The individual pulses are created by a pulse width modulator operating switches in accordance with standard practice. Since the switches must change polarity at high voltages, the power supply is constructed to cause switching from one polarity to the next opposite polarity at reduced current levels. The technique is disclosed in prior application Ser. No. 233,235 filed Jan. 19, 1999 for a different type of current pulse. This prior application is incorporated by reference herein for the purposes of showing a technique for switching a polarity of currents at reduced levels in a high current arc welder. A technique for providing alternating polarity in an inverter power supply for pipe welding is shown in Stava U.S. Pat. No. 6,051,810. This patent is incorporated by reference for its disclosure.
BACKGROUND OF INVENTION
In the manufacture of pipe that has a welded seam, it is common to use multiple AC welding arcs at extremely high current levels, such as over 1,000-2,000 amperes. The less expensive power supply to create such ultra high welding currents is a transformer based welder having a sinusoidal output current. This power supply requires only a large, heavy transformer and related control circuitry. However, to accomplish high welding currents the sinusoidal output has an extremely high peak current compared to the heating current determined by the root mean square of the sinusoidal wave. This relatively inexpensive power supply can create the necessary high current, but results in peak currents that seriously affect the welding operation. To overcome the disadvantages of a sinusoidal type electric arc welder, it is now common practice to use power supplies based upon high frequency switching technology. These switching type power supplies rectify the incoming line voltage to produce a DC link. This DC link is switched through a primary winding of an output transformer as alternating pulses to create an output current constituting the AC arc welding current. Pulse width modulators determine the frequency in the primary winding of the output transformer. Consequently, the pulses at the output transformer are substantially square waves. Thus, the root mean square of the secondary current is essentially the same as the maximum output current for the power supply. In this manner, welding arc does not require high peak currents to obtain the desired root mean square current for heating. Consequently, the inverter type power supply overcomes the disadvantage of the sinusoidal power supply when performing high current electric arc welding of the type needed for seam welding pipes. For this reason, pipe welding has been converted to the inverter technology.
Even though widely used for pipe welding, inverters present a dilemma. Standard inverter type power supplies generally have a maximum output in the range of 500 amperes. To provide an inverter type power supply for high currents in excess of 1,000-2,000 amperes, a special inverter must be designed and engineered. This involves substantial costs and highly trained electrical and welding engineers. But, such high capacity power supply has a relatively low sales volume. Consequently, high current inverters for use in pipe welding are not economically feasible and demand a long lead time. To overcome these disadvantages, The Lincoln Electric Company has developed a power supply using a master inverter, with one or more slave inverters controlled and operated in unison. When the welding operation requires a current in excess of 1500 amperes, three inverters are parallel. The rated output current for the compound inverter is tripled over a single off-the-shelf inverter. Increasing the number of inverters operated in unison to provide a high current type welder is expensive, but accomplishes the desired results.
There is a need for a high current power supply that creates an AC welding current having a root mean square current of over 1,000-2,000 amperes without the requirement of paralleling several standard low current inverters. Such high current power supply for use in electric arc welding of pipes must not have the peak current problem, experienced by a sinusoidal type power supply.
THE INVENTION
The present invention relates to an improved power supply for high current, AC electric arc welding, which power supply can be used in the field for pipe welding and other high current applications. A transformer converts AC line voltage, such as single phase or three phase line voltage, to a low output AC voltage, such as 70-100 volts. The output voltage is rectified and drives two standard down chopper modules, each driven by a common pulse width modulator. In some instances, each module may be driven by a dedicated pulse width modulator. A somewhat standard control board with a microprocessor controller sets the pulse width and, therefore, the magnitudes of the positive and negative current pulses constituting the AC welding current. This relatively inexpensive power supply can replace large inverter units without substantial engineering and lead time. The only disadvantage of the present invention is its high weight, due to the large input transformer; however, such weight is not a serious problem in pipe welding or other high current applications. By using the present invention, the power supply is robust and simple to construct. The power supply is constructed with readily available components.
In accordance with the present invention there is provided a power supply connectable to a source of AC line voltage for AC electric arc welding by an AC arc current across a gap between the electrode and workpiece. The electrode is in the form of an advancing wire that is melted by the arc and deposited on the workpiece. In practice, the workpiece is the gap or joint between two pipe sections. Line voltage is single, or three phase with a voltage between 200 volts and 600 volts AC. The frequency is normally 50 hertz or 60 hertz. The inventive power supply uses a high capacity, large transformer to convert line voltage to an AC output voltage of less than about 100 volts AC. A rectifier converts the AC output voltage to a DC voltage. This DC voltage has a positive potential at a first terminal and a negative potential at a second terminal. The third common terminal is at substantially zero voltage. This zero voltage terminal is preferably a system ground for the rectifier and welding operation. However, the common terminal can be the junction between two generally equal capacitors connected in series across the positive and negative terminals of the rectifier. This common terminal, or junction, coacts with the positive and negative terminals of the rectifier to provide DC voltage, either positive or negative. A network includes a first switch for connecting the positive terminals to the common terminal and across the gap when a gate signal is applied to the first switch and a second switch for connecting the negative terminal to the common terminal and across the gap when a gate signal is applied to the second switch. A pulse width modulator generates the gate signal in the form of pulses with a pulse frequency of at least about 18 kHz. A first logic gate directs the gate signal to the first switch for a first time period, i.e. a positive current portion, and a second logic gate directs the gate signal to the second switch for a second time, i.e. a negative current portion. A controller alternately operates the logic gates to create an AC arc current alternating between the opposite polarity current portions. The time of the first switch, i.e. the positive portion, can be different than the time of the second switch, i.e. the negative portion. In addition, the duty cycle of the pu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power supply for electric arc welding does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power supply for electric arc welding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power supply for electric arc welding will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3057224

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.