Plastic container having a carbon-treated internal surface

Stock material or miscellaneous articles – Hollow or container type article – Polymer or resin containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S036600, C427S237000, C427S256000, C215S012200

Reexamination Certificate

active

06592956

ABSTRACT:

TECHNICAL FIELD
The present invention relates to plastic containers based on recycled plastic. More particularly, the present invention relates to blow molded plastic containers based on recycled plastic, having barrier properties and having a carbon-coated internal surface.
BACKGROUND ART
It is highly desirable to provide plastic containers having barrier properties, and it is also highly desirable to provide plastic containers using recycled plastic. However, recycled plastic generally does not have barrier properties and cannot be used in containers in direct contact with container contents. Therefore, despite the economic desirability of using recycled plastic, the use of such material has been difficult.
Conventionally, the use of recycled plastic in containers especially those holding contents for human consumption has been limited to multi-layer plastic containers where the recycled plastic is an outer layer which does not come into direct contact with the container contents.
Multi-layer plastic containers are commonly used for packaging items in a wide range of fields, including food and beverage, medicine, health and beauty, and home products. Plastic containers are known for being easily molded, cost competitive, lightweight, and generally suitable for many applications. Multi-layered containers provide the benefit of being able to use different materials in each of the layers, wherein each material has a specific property adapted to perform a desired function.
Because plastic containers may permit low molecular gases, such as oxygen and carbon dioxide, to slowly permeate through their physical configurations, the use of plastic containers sometimes proves to be less desirable when compared to containers formed from other less permeable materials, such as metal or glass. In most applications, the shelf life of the product contents is directly related to the package's ability to effectively address such molecular permeation. In the case of carbonated beverages, such as beer, oxygen in the atmosphere surrounding the container can gradually permeate inwardly through the plastic walls of the container to reach inside of the container and deteriorate the contents. Likewise, carbon dioxide gas associated with the contents may permeate outwardly through the plastic walls of the container until eventually being released on the outside, causing the carbonated beverage to lose some of its flavor and possibly become “flat”.
To address some to the foregoing concerns, plastic container manufacturers have utilized various techniques to reduce or eliminate the absorption and/or permeability of such gases. Some of the more common techniques include: increasing the thickness of all or portions of the walls of the container; incorporating one or more barrier layers into the wall structure; including oxygen-scavenging or reacting materials within the walls of the container; and applying various coatings to the internal and/or external surface of the container. However, a number of conventional barrier and/or scavenger materials will not effectively curtail the permeation of both oxygen and carbon dioxide over extended periods of time. Moreover, there are usually other practical concerns associated with most conventional techniques, most commonly, increased material costs and/or production inefficiencies.
In recent times, the use of plastics has become a significant social issue. Recycling has become an increasingly important environmental concern and a number of governments and regulatory authorities continue to address the matter. In a number of jurisdictions, legislation pertaining to minimum recycled plastic content and the collection, return, and reuse of plastic containers has either been considered or has already been enacted. For example, in the case of plastic containers used to hold consumable items, such as food items or beverages, regulations often require a certain content and minimum thickness of the innermost layer that comes in contact with the contents. Conventional processes, such as co- or multiple-injection molding, are often limited as to the amount of recycled plastic that can be effectively incorporated into the structure of the container. Commonly, the amount of recycled content that can be effectively incorporated into conventional co-injection molded containers that are suitable for food contents is less than 40% of the total weight of the container.
Therefore, a need exists in the industry and it is an object of the present invention to provide a plastic container having a high recycled content that is suitable for holding carbonated products, such as carbonated beverages, and provides an acceptable level of performance when compared to commercial containers formed from alternative materials. A further need exists for a method to produce such containers in high volume commercial rates using conventional equipment.
It is a still further object of the present invention and need to provide a container based on recycled plastic which has barrier properties and which minimizes or avoids the high cost of inconvenience of conventional multi-layer plastic containers. It is a still further objective to do this at a reasonable cost, in a commercially feasible process, and with an effective product.
DISCLOSURE OF INVENTION
It has been found that the foregoing objects and advantages are readily obtained in accordance with the present invention.
Recognizing the problems and concerns associated with conventional multi-layered plastic containers, especially those used to hold carbonated beverages, a plastic container having enhanced gas barrier properties and a high content of recycled plastic is advantageously provided. A container constructed in accordance with the principles of the present invention provides several advantages over those previously available. Such advantages are generally realized through the use of the desirable recycled plastic and a carbon coating on the internal surface of the recycled plastic. It is a significant advantage that the container of the present invention has a significant amount of recycled content. Furthermore, the improved container can be produced using conventional processing techniques and manufacturing equipment.
An important aspect of the present invention is the effective barrier properties of the present container with the functional and commercial benefits associated with having a container comprised a significant amount of recycled plastic content. Further, the ease in subsequently recycling a container produced in accordance with the principles of the present invention make the practice of the invention extremely advantageous. Moreover, the present invention provides the additional advantage of permitting the manufacturer to controllably vary the material positioning and wall thickness at any given location along the vertical length of the inner and/or outer layers of the container.
In accordance with the principles of the present invention, a blow molded multi-layer container is provided having an upper wall portion, an intermediate sidewall portion positioned beneath the upper wall portion, and a base portion positioned beneath the intermediate sidewall portion, the base portion being adapted to dependently or independently support the container. The container includes a molded outer layer formed from recycled plastic and a carbon coating on the inner surface of the molded outer layer that is substantially coextensive with the inner layer. The recycled outer layer comprises at least 50% by weight of recycled plastic, but can comprise more than 75% by weight and desirably more than 90% by weight, depending upon the needs of the application. In a preferred embodiment, the thickness of the outer layer is controllably adjusted along its vertical length. If desirable, the outer layer may also include additional barrier materials and/or oxygen scavenging/reacting materials incorporated therein.
Other and further advantages and novel features of the invention are readily apparent from the following detailed description of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plastic container having a carbon-treated internal surface does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plastic container having a carbon-treated internal surface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plastic container having a carbon-treated internal surface will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3056541

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.