Head sending mechanism, backlash eliminating mechanism...

Dynamic magnetic information storage or retrieval – Head mounting – For shifting head between tracks

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06556385

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a linear tape storage system represented by DLT (digital liner tape) or LTO (linear tape open) and, in particular, to a magnetic tape head actuator assembly (or a head sending mechanism) and a backlash eliminating mechanism (or a wobble prevention mechanism) thereof.
Linear tape storage systems (magnetic recording/reproducing apparatus) of the type described are developed as “backup” systems for memory devices (e.g. hard disks) of computer systems and various types of the linear tape storage systems have been proposed in prior art. For example, a digital linear tape drive serving as the DLT is disclosed in U.S. Pat. No. 5,862,014 to Nute, entitled: “Multi-Channel Magnetic Tape Head Module Including Flex Circuit” or the like.
The digital linear tape drive (which may be merely called “driving apparatus”, “tape drive”, or “drive”) is for receiving a tape cartridge (which may be merely called “cartridge”) having a single reel (a supply reel) and contains a take-up reel therein. When the tape cartridge is installed in the driving apparatus, a magnetic tape is pulled out of the tape cartridge and then is wound by the take-up reel through a head guide assembly (HGA). The head guide assembly is for guiding the magnetic tape (which may be merely called “tape”) pulled out of the tape cartridge to a magnetic head. The magnetic head exchanges information between the tape and the magnetic head. The head guide assembly generally comprises a boomerang-shaped aluminum plate and six large guide rollers each using a bearing.
In addition, the head guide assembly is also called a tape guide assembly which is disclosed, for example, in U.S. Pat. No. 5,414,585 to Saliba, entitled: “Rotating Tape Edge Guide”. Furthermore, an example of the guide roller is disclosed in Japanese Unexamined Patent Publication No. 2000-100025 (JP 2000-100025 A).
The tape drive is generally comprised of a rectangular housing that has a common base as described, for example, in U.S. Pat. No. 5,793,574, entitled: “Tape Head Actuator Assembly Having A Shock Suppression Sleeve” to Cranson et al. The base has two spindle motors (reel motors). The first spindle motor has a spool (or a take-up reel) permanently mounted on the base and the spool is dimensioned to accept a relatively high speed streaming magnetic tape. The second spindle motor (reel motor) is adapted to accept a removable tape cartridge. The removable tape cartridge is manually or automatically inserted into the drive via a slot formed on the drive's housing. Upon insertion of the tape cartridge into the slot, the cartridge engages with the second spindle motor (reel motor). Prior to rotation of the first and the second spindle motors, the tape cartridge is connected to the permanently mounted spool (the take-up reel) by means of a mechanical buckling mechanism. A number of rollers (guide rollers) positioned, as intermediates, between the tape cartridge and the permanent spool guide the magnetic tape as it traverses at relatively high speeds back and forth between the tape cartridge and the permanently mounted spool.
In the digital linear tape drive having such a structure, an apparatus for pulling the tape from the supply reel to the take-up reel is required. Such as a pulling apparatus is disclosed, for example, in International Publication No. WO 86/07471. According to WO 86/07471, take up leader means (a first tape leader) is coupled to the take-up reel while supply tape leader means (a second tape leader) is connected to the tape on the supply reel. The first tape leader has one end formed into a mushroom like tab. The second tape leader has a locking aperture. The tab is engaged into the locking aperture.
Furthermore, a mechanism for joining the first tape leader with the second tape leader is required. Such a joining mechanism is disclosed, for example, in International Publication No. WO 86/07295.
In addition, Japanese Unexamined Patent Publication No. 2000-100116 (JP 2000-100116 A) discloses a structure of leader tape engaging part which can engage an end part of a leader tape (the second tape leader) to a tape end hooking part in a tape cartridge without requiring a tab projected in the side of the leader tape.
U.S. Pat. No. 5,857,634, entitled: “Take-up Reel Lock” to Hertrich discloses a locking system for preventing a take-up reel of a tape drive from rotating when a tape cartridge is not inserted to the drive.
On the other hand, an example of the tape cartridge installed in the digital linear tape drive is disclosed in Japanese Unexamined Patent Publication No. 2000-149491 (JP 2000-149491 A).
In addition, U.S. Pat. No. 6,241,171, entitled: “Leaderless Tape Drive” to Gaboury discloses a tape drive wherein a tape leader from a tape cartridge is urged through a tape path, into a take-up reel, and secured therein without the use of a buckling mechanism or a take-up leader.
In addition, the tape drive further comprises a magnetic tape head actuator assembly which is located between a take-up spool and a tape cartridge on a tape path defined by a plurality of rollers. During operation, a magnetic tape flows forward and backward between the take-up spool and the tape cartridge and is closely adjacent to the tape head actuator assembly while the magnetic tape flows on the defined tape path. An example of such as a magnetic tape head actuator assembly is disclosed in the above-mentioned U.S. Pat. No. 5,793,574.
The magnetic tape head actuator assembly comprises a tape head assembly and a head sending mechanism. The tape head assembly comprises a magnetic head and a head holder for holding the magnetic head. On the other hand, the head sending mechanism comprises a lead screw having a rotation axis and an external thread, a split nut having an internal thread engaging with the external thread of the lead screw, and a head lift for engaging the split nut and for holding the tape head assembly.
The magnetic tape head actuator assembly is mounted on a chassis of the tape drive. In this situation, rotation of the lead screw moves both of the split nut and the head lift up and down along the rotation axis of the lead screw and thereby moves the head assembly up and down.
To eliminate backlash between the lead screw and the split nut, an annular channel is formed at a peripheral surface of the split nut and a doughnut spring is located in the annular channel. The doughnut spring is a special coil spring formed into a doughnut shape. The doughnut spring elastically changes the shape of the split nut so as to press the split nut from the outside into the inside against the lead screw.
As mentioned above, the combination of the split nut and the doughnut spring is used as a backlash eliminating mechanism (or a wobble prevention mechanism) in the conventional magnetic tape head actuator assembly. However, the split nut and the doughnut spring are expensive because of their special shapes (or structures). Furthermore, the split nut has elasticity with a manufacturing variation and the same is true for the doughnut spring. Accordingly, it is difficult to obtain fixed pressing power from the split nut against the lead screw.
In addition, the conventional head sending mechanism comprises a bearing for the lead screw and a guide for preventing the head lift from rotating which are apart from the split nut. Thus, the head sending mechanism is expensive and it is difficult to mount the head sending mechanism on the chassis of the tape drive.
SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide a head sending mechanism (or an actuator assembly) with a backlash eliminating mechanism which can substantially eliminate backlash of the head sending mechanism by means of inexpensive structure (or by using inexpensive parts).
It is another object of this invention to provide a head sending mechanism (or an actuator assembly) with a backlash eliminating mechanism which can obtain fixed pressing power.
It is still another object of this invention to provide a head sending mechanism (or an actuator ass

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Head sending mechanism, backlash eliminating mechanism... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Head sending mechanism, backlash eliminating mechanism..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Head sending mechanism, backlash eliminating mechanism... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3051975

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.