Method and system for pointing and stabilizing a device

Aeronautics and astronautics – Missile stabilization or trajectory control – Automatic guidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S003150, C244S003160, C244S003190, C244S003210, C342S061000, C342S062000, C342S063000, C342S073000, C342S074000, C342S075000

Reexamination Certificate

active

06596976

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
1. Field of the Present Invention
The present invention relates to a controlling method and system for positioning measurement, and more particularly to a method and system for pointing and stabilization a device that needs to be pointed at a determined direction, wherein output data of an IMU (Inertial Measurement Unit) installed in the device and target information date are processed to compute a rotation command to an actuator; the actuator rotates and stabilizes the device into the determined direction according to the rotation commands; a visual and voice device provide a user with visualization and voice indication of the pointing and stabilization procedure of the device.
2. Description of Related Arts
In many applications, a user needs to command a device to be pointed and stabilized with specified orientation. For example, an antenna or a transmitter and receiver beam in a mobile communication system carried in a vehicle needs to be pointed at a communication satellite in orbit in dynamic environments. Of, a sniper rifle in the hands of a warrior of an Army elite sniper team needs to be pointed at a hostile target in a complex environment. A measurement device in a land survey system needs to be pointed at a specific direction with precision and stabilized.
Conventional pointing and stabilization systems are used only in large military weapon systems, or commercial equipment, which use conventional expensive, large, heavy, and high power consumption spinning iron wheel gyros and accelerometers as motion sensing devices. Their cost, size, and power prohibit them from use in the emerging commercial applications, including phased array antennas for mobile communication systems.
Conventional gyros and accelerometers, which are commonly used in inertial systems to sense rotation and translation motion of a carrier, include: Floated Integrating Gyros (FIG), Dynamically-Tuned Gyros (DTG), Ring Laser Gyros (RLG), Fiber-Optic Gyros (FOG), Electrostatic Gyros (ESG), Josephson Junction Gyros (JJG), Hemisperical Resonating Gyros (HRG), Pulsed Integrating Pendulous Accelerometer (PIPA), Pendulous Integrating Gyro Accelerometer (PIGA), etc.
New horizons are opening up for inertial sensor technologies. MEMS (MicroElectronicMechanicalSystem) inertial sensors offer tremendous cost, size, and reliability improvements for guidance, navigation, and control systems, compared with conventional inertial sensors. It is well known that the silicon revolution began over three decades ago, with the introduction of the first integrated circuit. The integrated circuit has changed virtually every aspect of our lives. The hallmark of the integrated circuit industry over the past three decades has been the exponential increase in the number of transistors incorporated onto a single piece of silicon. This rapid advance in the number of transistors per chip leads to integrated circuits with continuously increasing capability and performance. As time has progressed, large, expensive, complex systems have been replaced by small, high performance, inexpensive integrated circuits. While the growth in the functionality of microelectronic circuits has been truly phenomenal, for the most part, this growth has been limited to the processing power of the chip.
MEMS, or, as stated more simply, micromachines, are considered the next logical step in the silicon revolution. It is believed that this next step will be different, and more important than simply packing more transistors onto silicon. The hallmark of the next thirty years of the silicon revolution will be the incorporation of new types of functionality onto the chip structures, which will enable the chip to, not only think, but to sense, act, and communicate as well.
MEMS exploits the existing microelectronics infrastructure to create complex machines with micron feature sizes. These machines can have many functions, including sensing, communication, and actuation. Extensive applications for these devices exist in a wide variety of commercial systems.
Therefore, it is possible to develop a pointing and stabilization system for a device incorporating the MEMS technologies.
SUMMARY OF THE PRESENT INVENTION
The main objective of the present invention is to provide a method and system for pointing and stabilizing a device which needs to be pointed and stabilized with a determined orientation, wherein output signals of an inertial measurement unit and the desired direction information are processed to compute rotation commands to an actuator; the actuator rotates and stabilizes the device at the desired direction according to the rotation commands.
Another objective of the present invention is to provide a method and system for pointing and stabilizing a device, which needs to be pointed and stabilized at a desired orientation, wherein a visual and voice device is attached to provide a user with visualization and voice indications of targets and the pointing and stabilization operational procedure.
Another objective of the present invention is to provide a method and system for pointing and stabilizing a device which needs to be pointed and stabilized with a determined orientation, wherein the pointing and stabilization system has increased accuracy that an increase in the system's ability to reproduce faithfully the output pointing direction dictated by the desirable direction.
Another objective of the present invention is to provide a method and system for pointing and stabilizing a device, which can reduce sensitivity to disturbance, wherein the fluctuation in the relationship of system output pointing direction to the input desirable direction caused by changes within the system are reduced. The values of system components change constantly through their lifetime, but using the self-correcting aspect of feedback, the effects of these changes can be minimized. The device to be pointed is often subjected to undesired disturbances resulting from structural and thermal excitations. To aggravate the problem, disturbance profiles throughout the mission may have different characteristics.
Another objective of the present invention is to provide a method and system for pointing and stabilizing a device, which is more smoothing and filtering that the undesired effects of noise and distortion within the system are reduced.
Another objective of the present invention is to provide a method and system for pointing and stabilizing a device, which can increase bandwidth that the bandwidth of the system is defined as a range of frequencies or changes to the input desired direction to which the system will respond satisfactorily.
Another objective of the present invention is to provide a method and system for pointing and stabilizing a device, wherein the pointed and stabilized device may be very diverse, including:
(a) Antennas for a wireless communication system,
(b) Radar beams,
(c) Laser beam,
(d) Gun barrels, including sniper rifles, machine guns,
(e) Measurement devices for a land survey.


REFERENCES:
patent: 3421716 (1969-01-01), Altekruse et al.
patent: 3731544 (1973-05-01), Acker et al.
patent: 3876308 (1975-04-01), Alpers
patent: 3883091 (1975-05-01), Schaefer
patent: 4010467 (1977-03-01), Slivka
patent: 4173785 (1979-11-01), Licata

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for pointing and stabilizing a device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for pointing and stabilizing a device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for pointing and stabilizing a device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3051738

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.