Two-wire controlled switching

Electric lamp and discharge devices: systems – Current and/or voltage regulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S362000

Reexamination Certificate

active

06563273

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an electrical circuit which facilitates electrically controlled actuation of a switching device in a two-wire circuit where access may be gained only to an active or line conductor (herein referred to as an active conductor). The invention has been developed in relation to remotely controlled lighting circuits, for example lighting circuits that are switched responsive to an output being obtained from a timer or a motion detector, and the invention is hereinafter described in such context. However, it will be understood that the invention does have broader application.
BACKGROUND OF THE INVENTION
Lighting circuits in buildings typically are powered from twin-core (active and neutral) wiring that is located above ceilings of the buildings. Also, twin-core wiring normally is used for connecting a wall switch in circuit between an above-ceiling active conductor and the active side of a ceiling-mounted light fitting. That is, in a typical building situation a neutral conductor is not normally available below ceiling level and provision does not, therefore, exist for taking power from the circuit below ceiling level. Therefore, provision cannot conveniently be made for effecting electrically controlled switching of lighting, for example by using a relay that requires power to energise its coil.
Various so-called two-wire switch circuits have been devised for effecting controlled switching of lighting, using only an active conductor. In one such circuit, for example that disclosed in Australian Patent No. 608416 dated Feb. 28, 1989, a triac is employed as a controlled switch, but this approach creates heat dissipation problems in confined spaces, particularly with relatively large currents in the order of 10 amps. In a practical approach to the problem, a capacitor has been used in circuit with a bistable relay and charged to its maximum level when the relay is open. The capacitor charge is then used to energise the relay ON coil, when the relay is to be actuated to a closed condition, but the relay may be maintained in a closed condition only for such time as it takes for the capacitor to discharge to a level below that at which the relay OFF coil is energised.
Another approach has involved the use of a step-up transformer and reverse connected diodes for supplying latching current to a relay coil, but this is not suitable for use in restricted space situations.
Yet another approach has involved a circuit as disclosed by the present Applicant in Australian Patent Application No. 22429/99, dated Mar. 26, 1999. However, that circuit has required the use of an expensive Shottky diode and heat sinking for dissipating average power in the order of 2-3 watts.
SUMMARY OF THE INVENTION
The present invention provides an alternative approach to the problem, one which facilitates sustained actuation of a controlled switching device, such as a relay and which, in a preferred form, provides for electrically controlled actuation of the switching device over a wide range of load currents.
Broadly defined, the present invention provides a switching circuit which comprises:
(a) an electrically actuatable first switching device which is arranged to be connected in series with a load in a single phase ac circuit,
(b) a solid state second switching device connected in series with the first switching device,
(c) a first energy storage device connected across the first and second switching devices and arranged under controlled conditions to deliver actuating power to the first switching device,
(d) a second energy storage device connected across the second switching device and arranged to store energy for gating the second switching device,
(e) gating circuitry associated with the second energy storage device and arranged to effect periodic OFF-ON gating of the second switching device during the time that the first switching device is actuated to a conducting state, and
(f) circuit connections between the junction of the first and second switching devices and the first and second energy storage devices, the circuit connections providing for charge replenishment of the first energy storage device and charging of the second energy storing device during the OFF gating periods of the second switching device.
In operation of the switching circuit, the first energy storage device is employed as a source of energy for actuating and latching the first switching device. The first energy storage device is charged to its full capacity over an initial time period following connection of the circuit to a supply voltage but prior to actuation of the first switching device to a conducting condition. Thereafter, when the first switching device has been actuated to a conducting condition, loss of charge from the first energy storage device is replenished with periodic OFF-ON gating of the second switching device. This process is described in more detail later in this specification.
PREFERRED FEATURES OF THE INVENTION
The first switching device may comprise a solid state switching device when employed in relatively low power applications, but it preferably comprises a relay having a coil which is energised by an actuating signal that is derived from the first energy storage device. That is, the relay coil is provided with actuating/latching current that is derived from the first energy storage device under controlled conditions.
In the interest of minimising unacceptable heat losses and/or in order to obviate the need for heat sinking, the solid state second switching device preferably comprises a low impedance device, that is one which, in its conducting state, exhibits an impedance that causes a voltage drop which is not greater than about 500 mV rms with a current flow of 10 amps rms. The second switching device most preferably comprises a metal oxide semi-conductor field effect transistor (MOSFET) device.
The gating circuitry preferably is arranged to gate the second switching device to an OFF condition during an initial time interval in each positive half-cycle of the supply and, thereafter, to gate the second switching device ON for the remaining positive half-cycle and the next succeeding negative half-cycle of the supply. By taking this approach the need for a Schottky diode (and associated heat sink), as required in one of the previously acknowledged prior art approaches, is avoided.
During the time interval that the second switching device is gated OFF the voltage rise across the second switching device is employed to drive charging current to both the first and the second energy storage devices. However, the gating circuitry is effectively disabled unless and until the first switching device is actuated to a conducting condition.
The time interval during which the second switching device is gated to an OFF condition preferably is selected to cause a voltage rise across the device in the order of 10 to 20 volts.
The switching circuit as above defined preferably incorporates a processor that is arranged to effect the controlled actuation of the first switching device responsive to an input signal from a manual switching device, a proximity detector, a light level sensor, a motion detector, a remote control (IR or rf) signal sensor or other such device.
The invention will be more fully understood from the following description of a preferred embodiment of a switching circuit. The circuit is described with reference to the accompanying drawings.


REFERENCES:
patent: 3733528 (1973-05-01), Gilbreath
patent: 4520295 (1985-05-01), Bolhuis
patent: 4587459 (1986-05-01), Blake
patent: 4797599 (1989-01-01), Ference et al.
patent: 5107184 (1992-04-01), Hu et al.
patent: 3079889 (1989-09-01), None
patent: 199922429 (1999-10-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-wire controlled switching does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-wire controlled switching, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-wire controlled switching will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3050618

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.