Preparation of phosphorothioate oligomers

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S025300

Reexamination Certificate

active

06596857

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods for the preparation of diastereomerically enriched phosphorothioate linked oligonucleotides, and to intermediates useful in their preparation. This invention also relates to sequence-specific phosphorothioate oligonucleotides having chiral phosphorus linkages and to a novel chemical synthesis of these and other oligonucleotides.
BACKGROUND OF THE INVENTION
It is well known that most of the bodily states in multicellular organisms, including most disease states, are effected by proteins. Such proteins, either acting directly or through their enzymatic or other functions, contribute in major proportion to many diseases and regulatory functions in animals and man. Classical therapeutics has generally focused upon interactions with such proteins in efforts to moderate their disease-causing or disease-potentiating functions. In newer therapeutic approaches, modulation of the actual production of such proteins is desired. By interfering with the production of proteins, the maximum therapeutic effect might be obtained with minimal side effects. It is the general object of such therapeutic approaches to interfere with or otherwise modulate gene expression which would lead to undesired protein formation.
One method for inhibiting specific gene expression is with the use of oligonucleotides. Oligonucleotides complementary to a specific target messenger RNA (mRNA) sequence are used. Several oligonucleotides are currently undergoing clinical trials for such use.
Transcription factors interact with double-stranded DNA during regulation of transcription. Oligonucleotides can serve as competitive inhibitors of transcription factors to modulate the action of transcription factors. Several recent reports describe such interactions (see, Bielinska, et. al.,
Science
1990, 250, 997-1000; and Wu, et al.,
Gene
1990, 89, 203-209.)
Oligonucleotides also have found use in diagnostic tests. Such diagnostic tests can be performed using biological fluids, tissues, intact cells or isolated cellular components. As with the above gene expression inhibition, diagnostic use can take advantage of an oligonucleotide's ability to hybridize with a complementary strand of nucleic acid. Hybridization is the sequence specific hydrogen bonding of oligonucleotides via Watson-Crick and/or Hoogsteen base pairs to RNA or DNA. The bases of such base pairs are said to be complementary to one another.
Oligonucleotides are also widely used as research reagents. They are useful for understanding the function of many other biological molecules as well as in the preparation of such other biological molecules. One particular use, the use of oligonucleotides as primers in the reactions associated with polymerase chain reaction (PCR), has been the cornerstone for the establishment of an ever expanding commercial business. The use of such PCR reactions has seemingly “exploded” as more and more use of this very important biological tool is made. The uses of PCR have extended into many areas in addition to those contemplated by its Nobel laureate inventor. Examples of such new areas include forensics, paleontology, evolutionary studies and genetic counseling to name just a few. Primers are needed for each of these uses. Oligonucleotides, both natural and synthetics serve as the primers.
Oligonucleotides also are used in other laboratory procedures. A number of these uses are described in common laboratory manuals such as
Molecular Cloning, A Laboratory Manual
, Second Ed., J. Sambrook, et al., Eds., Cold Spring Harbor Laboratory Press, 1989; and
Current Protocols In Molecular Biology
, F. M. Ausubel, et. al., Eds., Current Publications, 1993. Such uses include Synthetic Oligonucleotide Probes, Screening Expression Libraries with Antibodies and Oligonucleotides, DNA Sequencing, In Vitro Amplification of DNA by the Polymerase Chain Reaction and Site-directed Mutagenesis of Cloned DNA from Book 2 of
Molecular Cloning, A Laboratory Manual
, ibid. and DNA-Protein Interactions and The Polymerase Chain Reaction from Vol. 2 of
Current Protocols In Molecular Biology
, ibid.
To supply the users of oligonucleotides, many scientific journals now contain advertisements for either oligonucleotide precursors or for custom-synthesized oligonucleotides. This has become an important commercial use of oligonucleotides. Oligonucleotides can be synthesized to have properties that are tailored for the desired use. Thus, a number of chemical modifications have been introduced into oligonucleotides to increase their usefulness in diagnostics, as research reagents, and as therapeutic entities. These modifications are designed, for example, to increase binding to a target nucleic acid strand, to assist in identification of the oligonucleotide or an oligonucleotide-target complex, to increase cell penetration, to provide stability against nucleases and other enzymes that degrade or interfere with the structure or activity of the oligonucleotides, to provide a mode of disruption (terminating event) once sequence-specifically bound to a target, or to improve the pharmacokinetic properties of the oligonucleotides.
Since they exist as diastereomers, phosphorothioate, methylphosphonate, phosphotriester, phosphoramidate and other phosphorus oligonucleotides synthesized using known, automated techniques result in mixtures of Rp and Sp diastereomers at the individual phosphorothioate, methylphosphonate, phosphotriester, phosphoramidate or other phosphorus linkages. Thus, a 15-mer oligonucleotide containing 14 asymmetric linkages has 2
14
, i.e. 16,384, possible stereoisomers. It is possible that oligomers having diastereomerically enriched linkages could possess advantages in hybridizing to a target mRNA or DNA. Accordingly, there is a need for such oligomers.
Miller, P. S., McParland, K. B., Jayaraman, K., and Ts'o, P. O. P (1981),
Biochemistry
, 20:1874, found that small di-, tri- and tetramethylphosphonate and phosphotriester oligonucleotides hybridize to unmodified strands with greater affinity than natural phosphodiester oligonucleotides. Similar increased hybridization was noted for small phosphotriester and phosphoramidate oligonucleotides; Koole, L. H., van Genderen, M. H. P., Reiners, R. G., and Buck, H. M. (1987),
Proc. K. Ned. Adad. Wet
., 90:41; Letsinger, R. L., Bach, S. A., and Eadie, J. S. (1986),
Nucleic Acids Res
., 14:3487; and Jager, A., Levy, M. J., and Hecht, S. M. (1988),
Biochemistry
, 27:7237. The effects of the diastereomers of undefined stereochemistry on hybridization becomes even more complex as chain length increases.
Bryant, F. R. and Benkovic, S. J. (1979),
Biochemistry
, 18:2825 studied the effects of diesterase on the diastereomers of ATP. Published patent application PCT/US88/03634 discloses dimers and trimers of 2′,5′-linked diastereomeric adenosine units. Niewiarowski, W., Lesnikowski, Z. J., Wilk, A., Guga, P., Okruszek, A., Uznanski, B., and Stec, W. (1987),
Acta Biochimica Polonia
, 34:217, synthesized dimers of thymidine having high diastereomeric excess, as did Fujii, M., Ozaki, K., Sekine, M., and Hata, T. (1987),
Tetrahedron
, 43:3395.
Stec, W. J., Zon, G., and Uznanski, B. (1985),
J. Chromatography
, 326:263, have reported the synthesis of certain mixtures of phosphorothioates or methyphosphonate oligonucleotides and have separated them by chromatography. However, they were only able to separate the diastereomers of certain small oligomers having a limited number of diastereomerically pure phosphorus linkages.
In a preliminary report, J. W. Stec,
Oligonucleotides as antisense inhibitors of gene expression: Therapeutic implications
, meeting abstracts, Jun. 18-21, 1989, noted that a non-sequence-specific thymidine homopolymer octamer—i.e. a (dT)
8
-mer, having “all-except-one” Rp configuration methylphosphonate linkages—formed a thermodynamically more stable hybrid with a 15-mer deoxyadenosine homopolymer—i.e. a d(A)
15
-mer—than did a similar thymidine homopolymer having “all-except-one” Sp configuration methylphosphonate linkage

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of phosphorothioate oligomers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of phosphorothioate oligomers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of phosphorothioate oligomers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3048756

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.