Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
2001-08-31
2003-04-15
Hsieh, Shin-Wen (Department: 2861)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C347S029000
Reexamination Certificate
active
06547368
ABSTRACT:
TECHNICAL FIELD
This invention concerns a printhead capping mechanism for preventing evaporation of ink from a printhead when it is not in use. The invention has utility, for instance, in a color printer which uses a drop-on-demand inkjet printhead.
BACKGROUND OF THE INVENTION
When not in use, a drop-on-demand printhead typically remains filled with ink, and so must be capped to prevent evaporation of ink through the nozzles. Ink evaporation can lead to gradual deposition of ink components which can impair nozzle operation.
SUMMARY OF THE INVENTION
The invention is a printhead capping mechanism for preventing evaporation of ink from a printhead. The mechanism includes a printhead cap and an actuating structure attached to said cap to selectively move said cap between an engaged position to press against the printhead, and a disengaged position spaced away from the printhead. The actuating structure includes a slip member to engage with a drive wheel in a printer in which the printhead is mounted, said engagement extending through at least part of a revolution of the drive wheel, such that rotation of said drive wheel in a first direction causes movement of said cap from said engaged position to said disengaged position, and that rotation of said drive wheel in a second direction causes movement of said cap from said disengaged position to said engaged position.
In use, the mechanism will usually be mounted in a printer adjacent the printhead. The cap may involve one or more capping moldings provided to ensure that all the nozzles of the printhead can be capped. The capping molding may consist of a capping plate which holds an elastomeric seal and sponge. The elastomeric seal, or seals, are shaped and sized to seal against the face of the printhead when the mechanism is engaged. Similarly, the sponges are sized and positioned to catch any drops of ink when the mechanism is engaged. The actuating structure will typically cooperate with the mechanism of the printer in which the printhead is mounted to ensure that it is operated at appropriate times to move the capping molding between the engaged and disengaged positions.
When the printhead is not in use, the actuating structure is operated to move the capping molding to the engaged position where it is held against the face of the printhead where the elastomeric seal conforms to the face of the printhead and creates an airtight seal around the printhead. The sponge is used to catch drops ejected from nozzles in the printhead during the printhead cleaning cycle.
When the printhead is in use, the actuating structure is operated to move the capping molding away from the printhead assembly where it is held out of the paper path of the printer.
The mechanism may conveniently operate by pivoting between the engaged and disengaged positions. To achieve this the capping moulding may be connected along the length of a rotatable rod, but spaced laterally away (or offset) from the rod. In this case rotation of the rod about its axis will cause movement between the engaged and disengaged positions.
The slip member may be mounted at the end of the rod to engage with a drive wheel in the printer. The drive wheel may be coupled to the paper transport motor of the printer so that when printing is occurring the rod is driven in the uncapping direction. Once the slip member rotates to the uncapping slip point, the slip member and the capping molding stop rotating. When printing is complete, the drive wheel is reversed and driven in the capping direction. Once the slip member rotates to the capping slip point, the slip member and the capping molding stop rotating, and holds the capping plate in place against the face of the printhead assembly.
A resilient member may be used to assist in holding the capping plate in place against the face of the printhead assembly. Resilience has been found to be conveniently included in the connection between the capping plate and the rod. This need not be a continuous connection, and a series of flexible arms have been found to serve well, both as an adequate connection and a suitably resilient member. In fact, in some embodiments where plastics materials have been employed to fabricate the capping plate and rod, a continuous connecting web has been found to be difficult to make sufficiently flexible.
In another aspect the invention is a printhead assembly including a printhead and the printhead capping mechanism.
In a further aspect the invention is a printer including the printhead capping mechanism, where a drive wheel of the paper transport system of the printer operates the actuating structure of the mechanism.
REFERENCES:
patent: 5086305 (1992-02-01), Terasawa
patent: 5252993 (1993-10-01), Tomii et al.
patent: 5260724 (1993-11-01), Tomii et al.
patent: 5373936 (1994-12-01), Kawai et al.
patent: 5835109 (1998-11-01), Uchida
patent: 5975676 (1999-11-01), Saijo
patent: 610 959 (1994-08-01), None
patent: 0 450 287 (1996-10-01), None
patent: WO 00/27640 (2000-05-01), None
Hsieh Shin-Wen
Silverbrook Research Pty Ltd
LandOfFree
Printer including printhead capping mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Printer including printhead capping mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printer including printhead capping mechanism will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048405