Optical fiber end processing method and optical fiber end...

Optical waveguides – With disengagable mechanical connector – Optical fiber/optical fiber cable termination structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S060000, C385S088000

Reexamination Certificate

active

06554488

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical fiber end processing method and an optical fiber end processing equipment for an optical connector that is employed between an optical fiber and an optical transmitting/receiving element or employed in a connection portion between the optical fibers in the optical communication field such as OA, FA, a vehicle equipment, etc.
2. Description of the Related Art
In the prior art, for example, in the optical connector employed in the car, etc., such a structure is employed that, in order to prevent the worker, etc. from erroneously touching the end surface of the plastic optical fiber, the top end portion of the ferrule that holds the end portion of the plastic optical fiber is arranged at the position that is retreated into the protection wall formed in the connector housing.
Meanwhile, in the optical connector, in order to prevent the attenuation of the light at the plastic optical fiber end surface serving as the connection end to the counterpart side, the end processing must be applied by pushing the plastic optical fiber end surface exposed from the top end portion of the ferrule against the hot plate surface which is subjected to the mirror process, etc.
Therefore, in the prior art, it is common that the connector housing having the protection wall and the ferrule are formed as separate bodies, then the plastic optical fiber is installed/held in the ferrule to apply the end process, and then the ferrule is assembled into the connector housing.
However, as described above, in the optical connector in which the ferrule and the connector housing are formed as the separate bodies, there is the problem that the number of parts is large and also the assembling of the ferrule and the connector housing becomes complicated.
Nevertheless, if the ferrule and the connector housing are integrally formed, the top end portion of the ferrule is arranged at the position that is retreated into the protection wall formed in the connector housing. Therefore, there is the problem that, since the protection wall acts as the obstacle, the top end portion of the plastic optical fiber that is protruded to the top end portion of the ferrule cannot be pushed against the flat hot plate surface and thus the end process becomes difficult.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention is to provide an optical fiber end processing method and an optical fiber end processing equipment, which is capable of executing easily the end process of the plastic optical fiber in the top end portion of the ferrule portion that is arranged at the position retreated into the protection wall of the connector housing portion.
In order to overcome the above subjects, an optical fiber end processing method for an optical connector according to a first aspect of the invention in which a ferrule portion for receiving/ holding an end portion of a plastic optical fiber is formed integrally to protrude from a connector housing portion and also an almost cylindrical protection wall portion is formed integrally in the connector housing portion to extend to a top end side rather than the ferrule portion, which comprises the steps of preparing an optical fiber end processing equipment in which a thermally conductive working body is provided onto a heating surface of a hot plate to project therefrom and a projected surface of the thermally conductive working body is worked into a mirror surface; inserting the plastic optical fiber into the ferrule portion to cause its top end portion to protrude; and pushing the top end portion of the plastic optical fiber that is projected to the top end side of the ferrule portion against a mirror surface of the thermally conductive working body, which is heated by the hot plate, by inserting the thermally conductive working body into the protection wall portion of the optical connector.
According to a second aspect of the invention, an equipment in which the hot plate and the thermally conductive working body are formed separate bodies and the thermally conductive working body is loaded separably on the hot plate is prepared as the optical fiber end processing equipment, the top end portion of the plastic optical fiber is pushed against the mirror surface of the thermally conductive working body, and the optical connector together with the thermally conductive working body is removed from the hot plate by utilizing an adhesive force of the heated/melted top end portion of the plastic optical fiber to the mirror surface of the thermally conductive working body, and then the thermally conductive working body is removed from the top end portion of the plastic optical fiber after the top end portion of the plastic optical fiber, that is protruded from the top end side of the ferrule portion, and the thermally conductive working body are cooled.
Also, according to a third aspect of the invention, an equipment in which the hot plate and the thermally conductive working body are formed separate bodies and the thermally conductive working body is formed as a laminated body of a plurality of thermally conductive plate members, at least one surface side of which is worked as the mirror surface is prepared as the optical fiber end processing equipment, and the top end portion of the plastic optical fiber is pushed against the mirror surface of the thermally conductive plate member that is laminated/arranged on an uppermost surface of the thermally conductive working body, then an overlying thermally conductive plate member of the thermally conductive working body is separated from an underlying thermally conductive plate member, by utilizing an adhesive force of the heated/melted top end portion of the plastic optical fiber to the mirror surface of the thermally conductive plate member that is laminated/arranged on the uppermost surface of the thermally conductive working body, and then the optical connector as well as the overlying thermally conductive plate member is removed from the hot plate.
In addition, according to a fourth aspect of the invention, an equipment in which the hot plate and the thermally conductive working body are formed integrally and a cooling mechanism for cooling the thermally conductive working body is incorporated into the thermally conductive working body is prepared as the optical fiber end processing equipment, and the top end portion of the plastic optical fiber is pushed against the mirror surface of the thermally conductive plate member that is laminated/arranged on an uppermost surface of the thermally conductive working body, then the thermally conductive working body is cooled by the cooling mechanism, and then the optical connector is removed from the hot plate by peeling off the top end portion of the plastic optical fiber from the mirror surface of the thermally conductive working body.
Also, in the optical fiber end processing equipment according to a sixth aspect of the present invention, an almost cylindrical guide portion, into an inside of which the protection wall portion is fitted and which guides the plastic optical fiber, that is installed/held in the ferrule portion, toward the mirror surface such that an axis direction of the plastic optical fiber is directed substantially perpendicular to the mirror surface of the thermally conductive working body is provided on the hot plate to protrude therefrom and to surround a position to which the thermally conductive working body provided.
Also, according to a seventh aspect of the present invention, the thermally conductive working body is formed separately from the hot plate.
Also, according to an eighth aspect of the present invention, the thermally conductive working body is formed to insert into the protection wall portion from at least two different directions and at least two mirror surfaces that comes into contact with the top end portion of the plastic optical fiber in respective insertion states are formed.
In addition, according to a ninth aspect of the present invention, the ther

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical fiber end processing method and optical fiber end... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical fiber end processing method and optical fiber end..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical fiber end processing method and optical fiber end... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3046773

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.