Unitary multi-component filter media

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S290000, C156S308400, C428S198000

Reexamination Certificate

active

06596109

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to air filter media. More particularly, this invention relates to a high efficiency filtration medium made by combining two or more different components into a unitary structure in such a way that the resultant product is capable of successfully removing both very small and larger particles from an air stream while at the same time exhibiting an acceptable degree of pressure drop.
BACKGROUND OF THE INVENTION
Due to adverse effects attributable to inhaling particles, including particles smaller than 10 microns, filtration media has been developed that will remove such particles from air streams. Filters employing such media are commonly referred to as HEPA filters, that is, High Efficiency Particulate Air filters.
Originally, HEPA grade filter media was manufactured from asbestos, glass wool, rock wool, and some organic fibers. A medium formed of a matrix of asbestos fibers combined with paper fibers was found to be the best for rapid, large scale commercial production. Subsequently, microfiber glass paper was used for HEPA filters. Common commercial HEPA media have been composed of borosilicate glass microfibers bound together by acrylic resin. Recently there has been interest in replacing glass microfiber media with organic fiber media in HEPA filters. Commonly used organic media is formed from meltblown media that carries an electrostatic charge.
A typical electrostatic material used in medical applications involves as fibers a thermoplastic mixture of a polyalkylene fiber such as polypropylene and an anionically substituted acrylic fiber. The fibers are needled together to a layer of scrim material on the lower side, and a top layer of scrim is then applied to the needled fabric to assure retention of loose fibers. This filtration medium is generally sealed along all its outer edges.
Recently, Rick Chapman discovered that stacking and spot-laminating layers of meltblown electrostatic filter media can increase the efficiency of the media without significant pressure drop. U.S. Pat. No. 5,900,305. Chapman teaches feeding a plurality of (similar) webs into the nip of heated rollers, thus compressing the webs; column 5, lines 55-57. In lines 14-30 of column 7, Chapman teaches feeding a plurality of (similar) layers into the nip between a patterned roller and a set of ultrasonic generators. Raised dots on Chapman's roller are pressed into a softened assembly to form a pattern of impression dots.
It is known that filtration efficiencies can be greatly improved by including in the filter media an electrostatic layer, e.g. produced by corona discharge, for filtering very small particles. It is also known that comparatively open glass fiber batts are quite efficient in removing larger particles from an air stream. This invention provides a filter that includes both charged filter media and a glass fiber batt, joined together in such a way as to provide a unitary filter having the advantages of both the charged media and the glass fiber batt.
There are several theoretical approaches to attaching a charged synthetic media layer to a glass fiber batt layer. While the two layers may be laminated together with adhesives or the like, adhesive coverage may be difficult to control and can result in substantial “blinding” of the unitary filter, i.e., substantial increase in the pressure drop across the filter. Even when it is attempted to place the adhesive in discrete spots, the adhesive tends to spread and, again, a substantial increase in the pressure drop across the filter can result. Needling the charged media and the glass fiber batt is not satisfactory, because the needling tends to disrupt the surface of the media, and it is difficult to get substantial needling into the glass fiber batt. Thus, prior to the present invention, it had not been practical to attempt the combination of the charged media and the glass fiber batt into a unitary filter media.
Ultrasonic bonding of two or more synthetic fiber webs using ultrasonic rotary drum bonder-laminators is known. Bonding takes place by fusing molecules the synthetic fiber web layers, that is, by melting. The rotary drum of the bonder-laminator generally has a pattern of projections on the surface of the drum. When ultrasonic waves are emitted from one or more horns, the waves concentrate at the projections. The energy of the waves is absorbed by the webs, with the absorption being concentrated at the projections. Hence, when the webs melt, the melt at discrete, small points at the projections. The bonded webs, thus, have a pattern of point-melt connections corresponding to the pattern of projections. Chapman (U.S. Pat. No. 5,900,305, discussed above) presses together a plurality of synthetic fiber webs in order to facilitate ultrasonic bonding thereof.
SUMMARY OF THE INVENTION
The present invention involves the discovery that a charged media and a glass fiber batt can be assembled into a unitary filter by means of a particular approach to ultrasonic welding of the charged media to the glass fiber batt. The projections from the ultrasonic rotary drum are so sized and the passing of a combination of the charged media layer and glass fiber batt layer over the drum is such that the projections do not substantially penetrate into this combination of layers and the combination of layers essentially rests on the top of the drum projections. The less the penetration of the drum projection into the combined layers, the more the original properties of each layer will be retained by the welded unitary filter. The combination of layers, being disposed on such a drum having projections as described, is then passed under one or more ultrasonic horns.
It has been found that this technique can be used to bond a synthetic web to a glass fiber web. The glass fibers will not melt because the ultrasonic wave energy cannot heat the glass fibers to their melting (softening) temperatures. Since the charged synthetic media layer is normally made of thermoplastic fibers in the form of a spunbonded web or scrim or a meltblown layer or the like, the concentrated vibrational energies at the projections will cause a melting of the thermoplastic fibers of the charged media only where those projections are encountered by the combination of the glass batt and the charged media.
This bonded web with the charged scrim can increase the efficiency of a filter made of the glass fiber web from a low efficiency to a HEPA efficiency filter.
More specifically, the present invention provides high efficiency particulate air filters that include a layer of electrostatically-charged thermoplastic fiber scrim which is point-bonded to a layer of glass fiber batting to form a composite layer defining an area. In these filters, the point-bonding is distributed over substantially all of the area of the composite layer and the bond points constitute approximately 1% to approximately 6% of the total surface area of the welded filter material, and the composite layer is substantially uncompressed. The point-bonding typically constitutes approximately 150 to 6000 welds per square foot, with the welds preferably being uniformly distributed over the entire area of the composite layer.
The present invention also provides a process for forming high efficiency particulate air filters, the process comprising the steps of providing an ultrasonic rotary drum having a large number of projections from the surface of the drum, tips of the projections distributed over substantially all of the area of the drum and constituting approximately 1% to approximately 6% of the total surface area of a cylindrical plane defined by the tips of the projections, passing a subassembly comprising a layer of electrostatically-charged thermoplastic fiber scrim resting on top of a layer of glass fiber batting over said drum in such a manner that said projections do not substantially penetrate into the subassembly, and passing said subassembly resting on top of said projections under an ultrasonic horn emitting high frequency sound waves into the subassembly in the su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Unitary multi-component filter media does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Unitary multi-component filter media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Unitary multi-component filter media will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3042115

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.