Method for monitoring a public water treatment system

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Chemical analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S030000, C702S031000, C702S188000, C210S634000, C210S638000, C210S660000, C210S141000, C700S270000, C700S271000

Reexamination Certificate

active

06560543

ABSTRACT:

FIELD OF THE INVENTION
This invention is related to the field of water treatment, and in particular, to a method of monitoring advanced separation and/or ion exchange processes by use of the world wide web allowing review of data collected and complied asynchronously from a web server.
BACKGROUND OF THE INVENTION
Potable water is essential with quality and safety standards regulated by the Environmental Protection Agency (EPA) in accordance with the Public Water System Supervision program. The standards are enforced by local agencies. There are over 170,000 water districts in the United States which provide public drinking water to 90% of Americans.
The EPA has primary standards designed to protect public health against substances that may be harmful to humans if consumed. EPA secondary standards ensure the aesthetic qualities of water such as taste, odor, or clarity. However, each water district remains responsible for monitoring the drinking water itself to ensure that it meets all drinking water standards. The treatment processes for the drinking water must be monitored as well.
In order to comply with the regulatory testing calendar, water districts are required to report a battery of analytical test results varying from hourly to yearly, depending on the source of the water supply. Water systems must monitor their drinking water to ensure that it is safe for their customers. Monitoring schedules differ according to the type of contaminants that may be present in a given water supply. The hourly tests are typically chlorine and turbidity, which can be accomplished with automatic analyzers. Water districts use electronic sensors to monitor the amount of storage, discharge pressure and flow from the systems on a daily basis. Other parameters which are not automatically sensored, but rather are determined by analytical tests, are reported to regulatory agencies on a periodic basis.
Municipal water may be obtained from any source, including seawater, all of which can be made potable by use of proper water treatment equipment. For instance, a reverse osmosis system is capable of lowering the total dissolved solids of sea water to drinking water levels. Despite the sophistication of pretreatment, improper operation can lead to fouled membranes. If fouling occurs but is found quickly, the membranes may be cleaned averting water contamination and associated water treatment repairs. However, if the fouling is not detected quickly, the water treatment system can be irreparably damaged and lead to human health concerns.
One of the problems with maintaining advanced processing equipment is a need for highly qualified individuals. Employment of a full time staff is costly and can be problematic since such monitoring is repetitively and highly qualified individuals can easily become bored. For this reason, all water treatment processes include a large assortment of strategically placed sensors that are typically incorporated into a computer system capable of comparing the sensor values against a pre-set quality level. However, if the operator does not recognize a particular alarm condition, the elaborate array of monitoring equipment is useless.
Municipal water treatment plants are ultimately the responsibility of elected officials. Yet these officials rarely have the technical training or time to allow them directly access the performance parameters of the systems for which they are responsible. The present invention could easily be used to provide a readily understandable presentation of the current performance of municipal water treatment system which was fully accessible by the elected officials as well as plant operators, at any time via the Internet. In addition, in this application of the technology, the same presentation of the system performance could be made accessible to the public at large, allowing interested members of the public to monitor the operation of their own drinking water plants as desired.
Thus, what is lacking in the art, is a means for monitoring water treatment processes in a cost effective manner by highly trained personnel providing regulatory reporting with a real time analysis that can be simultaneously viewed and verified at any time by multiple parties, from any location having access to the Internet.
SUMMARY OF THE INVENTION
The instant invention is a method of monitoring water treatment systems, particularly those subject to regulatory reporting such as potable water treatment systems. The method includes the collection of data which are manipulated to generate preconfigured performance, maintenance, quality assurance, quality control, regulatory, performance graphing, historical trends, and regulatory reports. The data is collected from sensors located at an equipment site and transferred to a remotely located computer by use of the Internet where all data received can be used for the generation of reports also accessible by Internet connection. The reports, graphs and information can be viewed online or downloaded by use of a web browser. Regulatory reports can be forwarded automatically to the regulatory agency via electronic transmission means with the added benefit of receiving reports generated directly from the sensor input thereby eliminated the possibility of human error or tampering. The method allows a single location to monitor countless customers with each customer capable of reviewing information relevant to their equipment, all information is kept confidential by use of appropriate account names, protocols and passwords.
Thus, an objective of the instant invention is to provide a method of compiling information from a plurality of sensors mounted to a water treatment system to generate operational information in near real time, from any location having access to the Internet. The compiled information can be placed into the required format required by regulatory agencies.
Another objective of the instant invention is to provide a system that operates independent of all system controls wherein no feedback is possible to the control system and to transfer such information by a local Internet provider or other internet connection to a consolidating Internet address.
Yet another objective of the instant invention is to provide an Internet report system that can be viewed online or offline providing alarms by the use of current and historical records.
Still another objective of the instant invention is to provide automatic polling of sensor data, automatic transmission of sensor data, data to graph conversion, data to statistical report conversation, compliance calendars, e-mail notification of compliance and the ability to automatically file data and reports with the regulatory agency.
Yet another objective of the instant invention is to provide scheduled and predicted maintenance reports by the use of the current and historical records; providing emergency notification of failures, shutdowns, critical parameters, membrane damage by the use of electronic mail, pager, and/or human voice calling.
Another objective of the instant invention is to regulatory reporting without the need for human interface thereby negating human error or tapering.
Still another objective of the instant invention is to provide a method of regulatory reporting which is independent and/or complimentary of the existing monitoring system.
Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.


REFERENCES:
patent: 4830757 (1989-05-01), Lynch et al.
patent: 5492632 (1996-02-01), Reber
patent: 5608171 (1997-03-01), Hunter et al.
patent: 5631744 (1997-05-01), Takeuchi et al.
patent: 5832410 (1998-11-01), Lin et al.
patent: 5835724 (1998-11-01), Smith
patent: 5865718 (1999-02-01), Chen
patent: 5970426 (1999-10-01), Ma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for monitoring a public water treatment system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for monitoring a public water treatment system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for monitoring a public water treatment system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3041271

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.